Made available in DSpace on 2014-07-29T15:08:17Z (GMT). No. of bitstreams: 1
Dissertacao Derciley Cunha de Almeida.pdf: 2389648 bytes, checksum: c4c207dc1855a4a0e99ee3eeed7c28b9 (MD5)
Previous issue date: 2011-02-25 / Nowadays, the use of modern information systems allows the storage and management of increasingly large amounts of data. On the other hand, the full analysis and the maximum extraction of useful information from this universe of
available data present considerable challenges in view of inherent human limitations. This dissertation deals with the subject of data mining, which is the use of technology
resources in order to extract information from databases in an automated way. One of the possibilities offered by data mining technologies is the automated search for
possible associations within data. Information about such associations can be useful for understanding cause and effect relationships between the involved variables in
data analysis for decision making. There are several data mining techniques and many of them can be used for discovering associations. The main goal of this work is to study a particular method for automated search of associations called Apriori , evaluating its capabilities and outcomes. The study focuses on the problem of improving the Apriori algorithm results, taking into consideration that the results of the data mining process might be improved if the data are prepared specifically for Apriori application. The conclusions are drawn from a case study in which the Apriori algorithm was applied to a database with information on drug distribution at a health
institute. The results of two experiments are considered in order to evaluate the influence of data preprocessing on the Apriori algorithm's performance. It was found that the Apriori algorithm yields satisfactory results on the
discovery of association in data; however, for best results, it is advisable that the data be prepared in advance, specifically for the Apriori application, otherwise many associations in the database might be left undiscovered. / Atualmente é possível o armazenamento e o gerenciamento de grandes quantidades de dados, através de modernos sistemas informatizados. Por outro
lado, a análise completa e a extração do máximo de informações desse universo de dados disponíveis passaram a ser um grande desafio, diante das limitações próprias de um ser humano. Essa dissertação aborda o tema mineração de dados, também muito conhecido pelo termo em inglês data mining. Trata-se da extração de
informações de bases de dados de forma automatizada, com o uso de recursos tecnológicos. Uma das possibilidades que as tecnologias de data mining oferecem é a busca automatizada de possíveis associações existentes entre dados. As informações sobre associações entre dados podem ser muito úteis para se compreender possíveis relações de causa e efeito entre muitas variáveis envolvidas em estudos e análises de dados para tomada de decisões. Há várias técnicas de mineração de dados e muitas podem ser utilizadas para descoberta de associações. O principal objetivo deste trabalho é estudar mais especificamente o método de busca automatizada de associações conhecido como Apriori de forma a avaliar sua sistemática, capacidade e resultados. O estudo é direcionado por um problema que está relacionado à busca pelo aprimoramento dos resultados gerados pelo algoritmo Apriori sob a premissa de que uma preparação de dados específica e direcionada para o uso do algoritmo pode aprimorar os resultados do processo de mineração de dados. As conclusões são extraídas de um estudo de caso sobre a aplicação do algoritmo Apriori em uma base de dados com informações sobre fornecimento de medicamentos de uma unidade de saúde. São avaliados e comparados os resultados de três experimentos para se verificar a influência de uma preparação de dados no desempenho do algoritmo.
Ficou evidenciado que o algoritmo Apriori alcança resultados satisfatórios na tarefa de busca por associações entre dados, no entanto, é recomendável uma preparação específica desses dados para que a aplicação do algoritmo alcance melhores resultados ou muitas associações existentes podem não ser encontradas.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/966 |
Date | 25 February 2011 |
Creators | ALMEIDA, Derciley Cunha de |
Contributors | BRITO, Leonardo da Cunha |
Publisher | Universidade Federal de Goiás, Mestrado em Engenharia Elétrica e de Computação, UFG, BR, Engenharia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds