Submitted by camilla martins (camillasmmartins@gmail.com) on 2017-01-27T16:34:20Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_StormsomClusterizacaoTempo-Real.pdf: 1081222 bytes, checksum: 30261425224872c11433d064abb4a2d8 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-01-30T13:30:32Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_StormsomClusterizacaoTempo-Real.pdf: 1081222 bytes, checksum: 30261425224872c11433d064abb4a2d8 (MD5) / Made available in DSpace on 2017-01-30T13:30:32Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_StormsomClusterizacaoTempo-Real.pdf: 1081222 bytes, checksum: 30261425224872c11433d064abb4a2d8 (MD5)
Previous issue date: 2015-08-28 / Cresce cada vez mais a quantidade de cenários e aplicações que algoritmo necessitam de processamento e respostas em tempo real e que se utilizam de modelos estatísticos e de mineração de dados a fim de garantir um melhor suporte à tomada de decisão. As ferramentas disponíveis no mercado carecem de processos computacionais mais refinados que sejam capazes de extrair padrões de forma mais eficiente a partir de grandes volumes de dados. Além disso, há a grande necessidade, em diversos cenários, que o os resultados sejam providos em tempo real, tão logo inicie o processo, uma resposta imediata já deve estar sendo produzida. A partir dessas necessidades identificadas, neste trabalho propomos um processo autoral, chamado StormSOM, que consiste em um modelo de processamento, baseado em topologia distribuída, para a clusterização de grandes volumes de fluxos, contínuos e ilimitados, de dados, através do uso de redes neurais artificiais conhecidas como mapas auto-organizáveis, produzindo resultados em tempo real. Os experimentos foram realizados em um ambiente de computação em nuvem e os resultados comprovam a eficiência da proposta ao garantir que o modelo neural utilizado possa gerar respostas em tempo real para o processamento de Big Data.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpa.br:2011/7487 |
Date | 28 August 2015 |
Creators | LIMA, João Gabriel Rodrigues de Oliveira |
Contributors | SANTANA, Ádamo Lima de, CARDOSO, Diego Lisboa |
Publisher | Universidade Federal do Pará, Programa de Pós-Graduação em Engenharia Elétrica, UFPA, Brasil, Instituto de Tecnologia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPA, instname:Universidade Federal do Pará, instacron:UFPA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds