Return to search

System identification and model-based control of a filter cake drying process

Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: A mineral concentrate drying process consisting of a hot gas generator, a flash dryer and a feeding section is found to be the bottleneck in the platinum concentrate smelting process. This operation is used as a case study for system identification and model-based control of dryers. Based on the availability of a month's worth of dryer data obtained from a historian, a third party modelling and control software vendor is interested in the use of this data for data driven model construction and options for dryer control. The aimed contribution of this research is to use only data driven techniques and attempt an SID experiment and use of this model in a controller found in literature to be applicable to the dryer process. No first principle model was available for simulation or interpretation of results. Data were obtained for the operation from the plant historian, reduced, cleaned and investigated for deterministic information through surrogate data comparison – resulting in usable timeseries from the plant data. The best datasets were used for modelling of the flash dryer and hot gas generator operations individually, with the hot gas generator providing usable results. The dynamic, nonlinear autoregressive models with exogenous inputs were identified by means of a genetic programming with orthogonal least squares toolbox. The timeseries were reconstructed as a latent variable set, or “pseudo-embedding”, using the delay parameters as identified by average mutual information, autocorrelation and false nearest neighbours. The latent variable reconstruction resulted in a large solution space, which need to be investigated for an unknown model structure. Genetic Programming is capable of identifying unknown structures. Freerun prediction stability and sensitivity analysis were used to assess the identified best models for use in model based control. The best two models for the hot gas generator were used in a basic model predictive controller in an attempt to only track set point changes.
One step ahead modelling of the flash dryer outlet air temperature was unsuccessful with the best model obtaining a validation R2 = 43%. The lack of process information
contained in the available process variables are to blame for the poor model identification. One-step ahead prediction of the hot gas generator resulted in a top model with validation R2 = 77.1%. The best two hot gas generator models were implemented in a model predictive controller constructed in a real time plant data flow simulation. This controller's performance was measured against set point tracking ability. The MPC implementation was unsuccessful due to the poor freerun prediction ability of the models. The controller was found to be unable to optimise the control moves using the model. This is assigned to poor model freerun prediction ability in one of the models and a too complex freerun model structure required. It is expected that the number of degrees of freedom in the freerun model is too much for the optimiser to handle. A successful real time simulation architecture for the plant dataflow could however be constructed in the supplied software. It is recommended that further process measurements, specifically feed moisture content, feed temperature and air humidity, be included for the flash dryer; closed loop system identification be investigated for the hot gas generator; and a simpler model structure with smaller reconstructed latent variable regressor set be used for the model predictive controller. / AFRIKAANSE OPSOMMING: 'n Drogings proses vir mineraal konsentraat bestaan uit drie eenhede: 'n lug verwarmer-, 'n blitsdroeër- en konsentraat toevoer eenheid. Hierdie droeër is geïdentifiseer as die bottelnek in die platinum konsentraat smeltingsproses. Die droeër word gebruik as 'n gevallestudie vir sisteem identifikasie asook model-gebasseerder beheer van droeërs. 'n Maand se data verkry vanaf die proses databasis, het gelei tot 'n derde party industriële sagteware en beheerstelsel maatskappy se belangstelling in data gedrewe modelering en beheer opsies vir die drogings proses. Die doelwit van hierdie studie is om data gedrewe modeleringstegnieke te gebruik en die model in 'n droeër-literatuur relevante beheerder te gebruik. Geen eerste beginsel model is beskikbaar vir simulasie of interpretasie van resultate nie. Die verkrygde data is gereduseer, skoon gemaak en bestudeer om te identifiseer of die tydreeks deterministiese inligting bevat. Dit is gedoen deur die tydreeks met stochastiese surrogaat data te vergelyk. Die mees gepaste datastelle is gebruik vir modellering van die blitsdroeër en lugverwarmer afsonderlik. Die nie-liniêre, dinamiese nie-linieêre outeregressie modelle met eksogene insette was deur 'n genetiese programmering algoritme, met ortogonale minimum kwadrate, identifiseer. Die betrokke tydreeks is omskep in 'n hulp-veranderlike stel deur gebruik te maak van vertragings-parameters wat deur gemiddelde gemeenskaplike inligting, outokorrelasie en vals naaste buurman metodes verkry is. Die GP algoritme is daartoe in staat om the groot oplossings ruimte wat deur hierdie hulp-veranderlike rekonstruksie geskep word, te bestudeer vir 'n onbekende model struktuur. Die vrye vooruitskattings vermoë, asook die model sensitiwiteit is inag geneem tydens die analiese van die resultate. Die beste modelle se gepastheid tot model voorspellende beheer is gemeet deur die uitkomste van 'n sensitiwiteits analise, asook 'n vrylopende voorspelling, in oënskou te neem.
Die een-stap vooruit voorspellende model van die droeër was onsusksesvol met die beste model wat slegs 'n validasie R2 = 43% kon behaal. Die gebrekkige meet
instrumente in die droeër is te blameer vir die swak resultate. Die een-stap vooruit voorspellende model van die lug verwarmer wat die beste gevaar het, het 'n validasie R2 = 77.1% gehad. 'n Basiese model voorspellende beheerder is gebou deur die 2 beste modelle van slegs die lugverwarmer te gebruik in 'n intydse simulasie van die raffinadery data vloei struktuur. Hierdie beheerder se vermoë om toepaslike beheer uit te oefen, is gemeet deur die slegs die stelpunt te verander. Die beheerder was egter nie daartoe in staat om die insette te optimeer, en so die stelpunt te volg nie. Hierdie onvermoë is as gevolg van die kompleks vrylopende model struktuur wat oor die voorspellingsvenster optimeer moet word, asook die onstabiele vryvooruitspellings vermoë van die modelle. Die vermoede is dat die loslopende voorspelling te veel vryheids grade het om die insette maklik genoeg te optimeer. Die intydse simulasie van die raffinadery se datavloei struktuur was egter suksesvol. Beter meting van noodsaaklike veranderlikes vir die droër, o.a. voginhoud van die voer, voer temperatuur, asook lug humiditeit; geslotelus sisteem identifikasie vir die lugverwarmer; asook meer eenvoudige model struktuur vir gebruik in voorspellende beheer moontlik vermag deur 'n kleiner hulp veranderlike rekonstruksie te gebruik.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/6654
Date03 1900
CreatorsWiese, Johannes Jacobus
ContributorsAldrich, C., University of Stellenbosch. Faculty of Engineering. Dept. of Process Engineering.
PublisherStellenbosch : University of Stellenbosch
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Format252 p. : ill.
RightsUniversity of Stellenbosch

Page generated in 0.0027 seconds