Return to search

Optimized Method of Estimating Mineral Reserves Using the O'Hara Mathematical Model for Underground Mining in Peru

Peru / This research project is aimed at applying the proposed methodology to optimize the calculation of mining reserves using an empirical relationship for dilution, as proposed by O'Hara. This methodology uses three key parameters: dilution, mineral value, and total costs. In general, costs include mining costs, processing within plants, and administrative expenses related to producing a mineralized block. Similarly, to calculate the mineral value, studies on changes in mineral prices over the last 30 years were included to provide more representative values. The research was applied to mineralized block number 1000, which yielded positive results since dilution could be easily calculated using three key parameters: operating method, dip, and vein width. The dilution value of 12.25% was valid, as it was within the range of 10% to 23%. This range was considered based on other studies that apply this operating method. Then, the methodology was analyzed in three more settings, each represented by a mineralized block. The blocks assessed were 1001, 1002, and 1003, and the results indicated that the dilution found was acceptable at values of 18%, 19%, and 22%, respectively.

Identiferoai:union.ndltd.org:PERUUPC/oai:repositorioacademico.upc.edu.pe:10757/651800
Date28 February 2020
CreatorsTorres-Sanchez, V., Torres-Sanchez, V., Olivas-Maldonado, P., Diaz-Huaina, G., Raymundo-Ibanez, C., Perez, Moises
PublisherInstitute of Physics Publishing
Source SetsUniversidad Peruana de Ciencias Aplicadas (UPC)
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/article
Formatapplication/pdf
SourceUniversidad Peruana de Ciencias Aplicadas (UPC), Repositorio Académico - UPC
Rightsinfo:eu-repo/semantics/openAccess, Attribution-NonCommercial-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-nc-sa/4.0/
RelationIOP Conference Series: Materials Science and Engineering, 1, https://iopscience.iop.org/article/10.1088/1757-899X/758/1/012016, 758

Page generated in 0.002 seconds