Return to search

Nitrogen Availability and Use Efficiency in Corn Treated with Contrasting Nitrogen Sources

The plant-soil nitrogen cycle plays a significant role in allocation of available N to plants, and improved understanding of N cycling helps sustainably increase fertilizer use efficiency. There are various processes (nitrogen mineralization and nitrification) involved in the availability and mobility of nitrogen in the soil. The primary objective of this study was to determine the NUE under contrasting nitrogen treatments over a period of five years. Additionally, we examined the effect of different N treatments on N mineralization and nitrification in conventional and organic farming systems.
This project was funded by Agriculture and Food Research Initiative Competitive Grants Program Grant no. 2011-67019-30178 from the USDA National Institute of Food and Agriculture and by the Utah Agricultural Experiment Station. We established silage corn field plots in northern Utah, and silage corn was grown using ammonium fertilizers or manure composts over five years. Nitrogen use efficiency was found to be higher in ammonium sulfate fertilizer treatments as compared to compost treated soils. Nitrogen mineralization and nitrification rates were examined for soils from the silage corn field plots and also for additional soils from certified organic field plots receiving steer compost, steer manure and crop rotations. There was a significant overall nitrogen treatment effect for both conventional and organic rotational plots. Carbon mineralization rates were found to be higher in compost under conventional plots and manure under organic rotational plots as compared to control. There was no significant treatment effect found in gross mineralization and nitrification rates in 2015 and 2016. Gross nitrification rates were found to be the higher in AS200 treatment versus compost and control in 2016.
Improved knowledge of the timing and rates of nitrogen supply is vital for improving NUE and for reducing excessive use of fertilizers while maintaining an acceptable yield. The optimization of fertilizer rates according to crop demand at different stages of growth will be helpful in the efficient management of available N especially for composts and manures.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8002
Date01 December 2017
CreatorsKakkar, Avneet
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.002 seconds