Minimally invasive surgeries (MIS) are fundamentally constrained by image quality,access to the operative field, and the visualization environment on which thesurgeon relies for real-time information. Although invasive access benefits the patient,it also leads to more challenging procedures, which require better skills andtraining. Endoscopic surgeries rely heavily on 2D interfaces, introducing additionalchallenges due to the loss of depth perception, the lack of 3-Dimensional imaging,and the reduction of degrees of freedom.By using state-of-the-art technology within a distributed computational architecture,it is possible to incorporate multiple sensors, hybrid display devices, and3D visualization algorithms within a exible surgical environment. Such environmentscan assist the surgeon with valuable information that goes far beyond what iscurrently available. In this thesis, we will discuss how 3D visualization and reconstruction,stereo displays, high-resolution display devices, and tracking techniques arekey elements in the next-generation of surgical environments.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1231 |
Date | 01 January 2006 |
Creators | CABAN, JESUS |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0019 seconds