Numerous studies have demonstrated the potential efficacy of percutaneous image-guided interventions over open surgical interventions. The conventional image-guided procedures are limited by the freehand technique, requiring mental 3D registration and hand-eye coordination for needle placement. The outcomes of these procedures are associated with longer duration and increased patient discomfort with high radiation exposure. Previously, a static image overlay system was proposed for aiding needle interventions. Certain drawbacks associated with the static system limited the clinical translation.
To overcome the ergonomic issues and longer calibration duration associated with static system, an adjustable image overlay system was proposed. The system consisted of monitor and semi-transparent mirror, attached together to an articulated mobile arm. The 90-degree mirror-monitor configuration was proposed to improve the physician access around the patient. MicronTracker was integrated for dynamic tracking of the patient and device. A novel method for auto-direct calibration of the virtual image overlay plane was proposed. Due to large mechanical structure, the precise movement was limited and consumed useful space in the procedure room. A mobile image overlay system with reduced system weight and smaller dimensions was proposed to eliminate the need for mechanical structure. A tablet computer and beamsplitter were used as the display device and mirror respectively. An image overlay visualization module of the 3D Slicer was developed to project the correct image slice upon the tablet device.
The system weight was reduced to 1 kg and the image overlay plane tracking precision (0.11mm STD=0.05) was similar to the printed physical markers. The auto-calibration of the image overlay plane can be done in two simple steps, away from the patient table and without additional phantom. Based on the successful pre-clinical testing of the previous static system, the mobile image overlay system with reduced weight, increased tracking precision and easier maneuverability, can be possibly hand-held by the physician to explore the image volume over the patient and be used for a wide range of procedures. The mobile image overlay system shall be classified as Class II device as per FDA regulations, do not require extensive verification and validation efforts and further improves the commercialization opportunities. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2014-06-26 18:51:03.958
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/12255 |
Date | 26 June 2014 |
Creators | ANAND, Manjunath |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0019 seconds