This paper provides a risk assessment of pertinent toxic contaminants in the tailings of the Iron King Mine using a model of aeolian transport fated in human alveolar lung. Here, we studied particulate matter of tailings that are 10 microns (𝜇𝑚) or less in diameter (𝑃𝑀₁₀) because these is most hazardous fraction. We used in-vitro bioaccessibility and in-vivo Microtox® data to determine the relationships between chronic inhalation of these tailings. Our data suggest that arsenic and zinc are the two principle drivers for toxicity of the Iron King Mine’s PM₁₀ tailings and that arsenic will solubilize in human alveolar biofluids at the expense of other noteworthy elemental contaminants in the tailings. The principle contaminant of concern for chronic exposure is arsenic, due to its increased bioaccessibility over time. Our data show that synthetic lung fluid (SLF) mitigates the toxic effects of arsenic, despite its increase in bioaccessibility over time. Therefore, we suggest a buffering mechanism of phosphate competition with arsenate to explain this mitigation of toxicity in SLF. We conclude that public health risk of chronic inhalation of IKM PM₁₀ tailings may be less severe than would otherwise be suggested by high concentrations of toxic contamination in the tailings impoundment.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621933 |
Date | January 2016 |
Creators | Hutchison, Dylan Michael, Hutchison, Dylan Michael |
Contributors | Chorover, Jon |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0055 seconds