Return to search

A novel aluminium nano-composite with enhanced mechanical properties

The aim of this study was to develop a new castable and heat treatable alloy, based on the A205 alloy composition, with improved thermal stability at 230 °C. Several unique combinations of alloying elements, chosen from groups IIIB, IVB and VB, up to 0.5 wt. %, were added to the A205 alloy. These elements were chosen to nucleate high temperature precipitates, with a cubic L12 structure. The additions were made in group of two, with one elements being always the zirconium. After 1000 hours holding at 230 °C, several of these alloys resulted to have better mechanical properties when compared to the A205 alloy. The IDEAL alloy was chosen and further studies were carried out. This alloy showed the same tensile proprieties of the A205 alloy at peak-aged condition, while at elevated temperature, the IDEAL alloy had 15 % improved UTS and YS. An investigation was carried out to understand the reasons of this improvement. Two strengthening mechanisms were found. Firstly, the microstructure of the alloy showed a reduced size of the Al-Cu precipitates. Secondly, two different high temperature precipitates were nucleated.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:720718
Date January 2017
CreatorsMelotti, Federico
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/7612/

Page generated in 0.0014 seconds