Return to search

Design and development of a new class of intra-filament hybrid composite

Two distinct techniques for “optimum” fibre spreading of 2400 Tex E-glass and 12K carbon fibre bundles were designed and developed in this research project. These techniques enabled increases in fibre bundle width of 956% and 1121% for E-glass and carbon fibre bundles respectively. These values surpass anything reported in the literature. Tensile testing was conducted on dry fibre bundles in the as-received and spread state. A reduction in the tensile failure stress and Weibull survival probability was observed with an increase in gauge length. The effect of spreading was determined to be statistically significant at a gauge length of 100 mm; however it was not significant at a gauge length of 50 mm. Composites were manufactured using as-received or spread fibre bundles and their properties analysed and compared. The composites manufactured using spread fibre bundles were significantly thinner than those manufactured using as-received fibre bundles. In hybrid composites the degree of mixing of the two reinforcing fibre types was greater than has been reported in the literature. The overall conclusion from this study is that the utilisation of spread E-glass and carbon fibre bundles can be used as a means for enhancing the apparent failure strain of carbon fibre composites.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:707639
Date January 2017
CreatorsMurray, Richard Cameron
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/7283/

Page generated in 0.0019 seconds