Software projects go through a phase of maintenance and, in case of open source projects, through hard development process. Both of these phases are prone to regressions, meaning previously working parts of system do not work anymore. To avoid this behavior, systems are being tested with long test suites, which can be sometimes time consuming. For this reason, prediction models are developed to predict software regressions using historical testing data and code changes, to detect changes that can most likely cause regression and focus testing on such parts of code. But, these predictors rely on static code analysis without deeper semantic understanding of the code. Purpose of this master thesis is to create predictor, that relies not only on static code analysis, but provides decisions based on code semantics as well.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255448 |
Date | January 2016 |
Creators | Matys, Filip |
Contributors | Vojnar, Tomáš, Šimková, Hana |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds