Return to search

Předpověď nových chyb pomocí dolování dat v historii výsledků testů / Bug Prediction Using Data Mining of Test Result History

Software projects go through a phase of maintenance and, in case of open source projects, through hard development process. Both of these phases are prone to regressions, meaning previously working parts of system do not work anymore. To avoid this behavior, systems are being tested with long test suites, which can be sometimes time consuming. For this reason, prediction models are developed to predict software regressions using historical testing data and code changes, to detect changes that can most likely cause regression and focus testing on such parts of code. But, these predictors rely on static code analysis without deeper semantic understanding of the code. Purpose of this master thesis is to create predictor, that relies not only on static code analysis, but provides decisions based on code semantics as well.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255448
Date January 2016
CreatorsMatys, Filip
ContributorsVojnar, Tomáš, Šimková, Hana
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0023 seconds