Bibliography: pages 117-120. / A high-speed reciprocating sliding wear test rig was used to examine the metal on metal surface interactions of materials under consideration for application in water powered stoping equipment. The suitability of this test rig was investigated by implementing a test programme covering self-mated stainless steel and stainless steel-on-bronze couples. These couples were examined under water lubricated conditions in a broad test matrix, covering sinusoidal peak velocities of 1, 5 and 10 m/s; loads of 5, 10 and 20N and surface roughness values ranging from 0.2 to 0.4 μm, CLA. Due to poor reproducibility and inconclusive wear behaviours, no inferences could. be made as to the relative performance of the couples tested and no ranking tables could be compiled, In response to these findings, the emphasis changed to the design of a better test facility which could more accurately simulate the tribological interactions of interest. A new laboratory test rig, capable of investigating the performance of material surfaces, rubbing against one another under conditions of high speed reciprocating sliding in specific environments, was designed, built and commissioned. Subsequent tests conducted on this new facility showed average reproducibility for a 122 stainless steel rubbing against a CZ114 manganese bronze to have improved by a factor of two to approximately ± 20%. Initial results confirmed that adhesive wear is the dominant wear mode for the materials under consideration. This is manifested by homogeneous transfer layers and subsequent grooving of these layers.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/22575 |
Date | January 1989 |
Creators | Kienle, Ulrich F B |
Contributors | Ball, Anthony |
Publisher | University of Cape Town, Faculty of Engineering and the Built Environment, Centre for Materials Engineering |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Master Thesis, Masters, MSc (Eng) |
Format | application/pdf |
Page generated in 0.002 seconds