Return to search

Stochastic feasibility assessments of orbital propellant depot and commercial launch enabled space exploration architectures

The 2010 National Space Policy of the United State of America introduced by President Obama directed NASA to set far reaching exploration milestones that included a crewed mission to a Near Earth Asteroid by 2025 and a crewed mission to Martian orbit by the mid-2030s. The policy was directly influenced by the recommendations of the 2009 Review of United States Human Space Flight Plans Committee, which called for an evolutionary approach to human space exploration and emphasized the criticality of budgetary, programmatic, and program sustainability. One potential method of improving the sustainability of exploration architectures is the utilization of orbital propellant depots with commercial launch services.

In any exploration architecture, upwards of seventy percent of the mass required in orbit is propellant. A propellant depot based architecture allows propellant to be delivered in small increments using existing commercial launch vehicles, but will require three to five times the number of launches as compared to the using the NASA planned 70 to 130 metric ton heavy lift launch system. Past studies have shown that the utilization of propellant depots in exploration architectures have the potential of providing the sustainability that the Review of United States Human Space Flight Plans Committee emphasized. However, there is a lack of comprehensive analysis to determine the feasibility of propellant depots within the framework of human space exploration.

The objective of this research is to measure the feasibility of a propellant depot and commercial launch based exploration architecture by stochastic assessment of technical, reliability, and economic risks. A propellant depot thermal model was developed to analyze the effectiveness of various thermal management systems, determine their optimal configuration, quantify the uncertainties in the system models, and stochastically compute the performance feasibility of the propellant depot system. Probabilistic cost analysis captured the uncertainty in the development cost of propellant depots and the fluctuation of commercial launch prices, and, along with the cost of launch failures, provided a metric for determining economic feasibility. Probabilistic reliability assessments using the launch schedule, launch reliability, and architecture requirements of each phase of the mission established launch success feasibility. Finally, an integrated stochastic optimization was performed to determine the feasibility of the exploration architecture.

The final product of this research is an evaluation of propellant depots and commercial launch services as a practical method to achieving economic sustainability for human space exploration. A method for architecture feasibility assessment is demonstrated using stochastic system metrics and applied in the evaluation of technical, economic, and reliability feasibility of orbital propellant depots and commercial launch based exploration architectures. The results of the analysis showed the propellant depots based architectures to be technically feasible using current commercial launch vehicles, economically feasible for having a program budget less than $4 billion per year, and have launch reliability approaching the best single launch vehicle, Delta IV, with the use of redundant vehicles. These results serve to provide recommendations on the use of propellant depots in exploration architectures to the Moon, Near Earth Objects, Mars, and beyond.The 2010 National Space Policy of the United State of America introduced by President Obama directed NASA to set far reaching exploration milestones that included a crewed mission to a Near Earth Asteroid by 2025 and a crewed mission to Martian orbit by the mid-2030s. The policy was directly influenced by the recommendations of the 2009 Review of United States Human Space Flight Plans Committee, which called for an evolutionary approach to human space exploration and emphasized the criticality of budgetary, programmatic, and program sustainability. One potential method of improving the sustainability of exploration architectures is the utilization of orbital propellant depots with commercial launch services.

In any exploration architecture, upwards of seventy percent of the mass required in orbit is propellant. A propellant depot based architecture allows propellant to be delivered in small increments using existing commercial launch vehicles, but will require three to five times the number of launches as compared to the using the NASA planned 70 to 130 metric ton heavy lift launch system. Past studies have shown that the utilization of propellant depots in exploration architectures have the potential of providing the sustainability that the Review of United States Human Space Flight Plans Committee emphasized. However, there is a lack of comprehensive analysis to determine the feasibility of propellant depots within the framework of human space exploration.

The objective of this research is to measure the feasibility of a propellant depot and commercial launch based exploration architecture by stochastic assessment of technical, reliability, and economic risks. A propellant depot thermal model was developed to analyze the effectiveness of various thermal management systems, determine their optimal configuration, quantify the uncertainties in the system models, and stochastically compute the performance feasibility of the propellant depot system. Probabilistic cost analysis captured the uncertainty in the development cost of propellant depots and the fluctuation of commercial launch prices, and, along with the cost of launch failures, provided a metric for determining economic feasibility. Probabilistic reliability assessments using the launch schedule, launch reliability, and architecture requirements of each phase of the mission established launch success feasibility. Finally, an integrated stochastic optimization was performed to determine the feasibility of the exploration architecture.

The final product of this research is an evaluation of propellant depots and commercial launch services as a practical method to achieving economic sustainability for human space exploration. A method for architecture feasibility assessment is demonstrated using stochastic system metrics and applied in the evaluation of technical, economic, and reliability feasibility of orbital propellant depots and commercial launch based exploration architectures. The results of the analysis showed the propellant depots based architectures to be technically feasible using current commercial launch vehicles, economically feasible for having a program budget less than $4 billion per year, and have launch reliability approaching the best single launch vehicle, Delta IV, with the use of redundant vehicles. These results serve to provide recommendations on the use of propellant depots in exploration architectures to the Moon, Near Earth Objects, Mars, and beyond.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54291
Date07 January 2016
CreatorsChai, Patrick R.
ContributorsWilhite, Alan W.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0448 seconds