Mitochondria are the main sites for adenosine triphosphate (ATP) generation within most cells. Structural and functional alterations of mitochondria due to genetic abnormalities of mitochondria can cause respiratory chain dysfunction. In this study, the important role of mitochondria in energy metabolism was determined by comparing the effect of mitochondrial DNA (mtDNA) mutations on growth patterns and oxidative phosphorylation (OXPHOS) enzyme activities of six isolated clones (B5, B12, D4, D9, E1 and E8); as well as the effect of ATP supplement to culture using the slowest growing clone. The isolated clones had shown distinct growth pattern and morphology. The difference in proliferation rates among the clones was ascertained by the doubling times (B5=26.4h. B12=43.2h. D4=25.7h. D9=33.6h. E1=26.9h and E8=28.8h). The clone's slow growth rate was likely the result of mitochondrial mutations in the 16S rRNA gene, ND1, ND4, ND6 and COX III. Five heteroplasmic mutations were found in clone B12 (G2480T, C2513G, A2520T, C9527T and C14263G), one heteroplasmic mutation in clone D9 (A4137G) and one homoplasmic mutation in clone D4 (C11496). The mutations in clone B12 appeared to be deleterious to the cell by disrupting mitochondrial OXPHOS activities and reducing energy output. Additionally, extracellular ATP supplement to OXPHOS deficient clone B12 facilitated cell growth and enhances the gene expression. Increased expression of mtDNA-encoded respiratory chain complexes observed in clone B12 compared to clone D4 may reflect mitochondrial genomic adaptation to perturbations in cellular energy requirements. The stimulation of mitochondrial biogenesis may be a cellular response in compensation for defects in OXPHOS associated with mtDNA mutations. My data support the hypothesis that the variability in functional manifestations of mtDNA is attributed to the nature of the mutation, number of mutation and the gene specifically affected. These results will help to further our understanding of the relationship between mitochondrial mutation and cellular function.
Identifer | oai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1392 |
Date | January 2006 |
Creators | Sin, Yuan Yan (Angie) |
Publisher | University of Canterbury. Biological Sciences |
Source Sets | University of Canterbury |
Language | English |
Detected Language | English |
Type | Electronic thesis or dissertation, Text |
Rights | Copyright Yuan Yan (Angie) Sin, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml |
Relation | NZCU |
Page generated in 0.0018 seconds