During the growth phase of oogenesis, mammalian oocytes increase several hundred-fold in volume. Although it is known that ovarian granulosa cells send growth promoting signals, neither these external signals nor the transduction pathways that become activated in the oocyte are known. Therefore, the presence and the activity of candidate signaling pathways in growing murine oocytes were investigated. By immunoblotting, the MAP kinases, ERK1 and ERK2, as well as their activating kinase MEK, were detected in oocytes at all stages of growth. However, using a phospho-specific anti-ERK antibody, no immunoreactive species were detectable in isolated granulosa cells or oocytes at any stage of growth, except metaphase II. Phosphorylated ERK was also present, although in smaller quantities, in oocyte-granulosa cell complexes at the later stages of growth. Furthermore, when ovarian sections were stained with an anti-ERK antibody, the protein was found to be highly concentrated in the cytoplasm of oocytes at all stages of growth, with lower levels in the nucleus. Another member of the MAP kinase family, Jun kinase (JNK), was investigated. By immunoblotting, JNK was detected in growing oocytes. Experiments using an anti-JNK antibody on ovary sections revealed the protein to be uniformly distributed in non-growing and growing oocytes with no evidence of preferential nuclear localization. These results imply that an interaction between the oocyte and the granulosa cells may be required to generate phosphorylated ERK. They also imply that growth signals probably are not relayed through ERK, but do not exclude a role for Jun kinase in mediating oocyte growth.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.31239 |
Date | January 2000 |
Creators | Hurtubise, Patricia. |
Contributors | Clarke, Hugh J. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Biology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001810451, proquestno: MQ70436, Theses scanned by UMI/ProQuest. |
Page generated in 0.0013 seconds