Les primates doivent pouvoir reconnaître de nouvelles situations pour pouvoir s'y adapter. La représentation de ces situations dans l'activité du cortex est le sujet de cette thèse. Les situations complexes s'expliquent souvent par l'interaction entre des informations sensorielles, internes et motrices. Des activités unitaires dénommées sélectivité mixte, qui sont très présentes dans le cortex préfrontal (CPF), sont un mécanisme possible pour représenter n'importe quelle interaction entre des informations. En parallèle, le Reservoir Computing a démontré que des réseaux récurrents ont la propriété de recombiner des entrées actuelles et passées dans un espace de plus haute dimension, fournissant ainsi un pré-codage potentiellement universel de combinaisons pouvant être ensuite sélectionnées et utilisées en fonction de leur pertinence pour la tâche courante. En combinant ces deux approches, nous soutenons que la nature fortement récurrente de la connectivité locale du CPF est à l'origine d'une forme dynamique de sélectivité mixte. De plus, nous tentons de démontrer qu'une simple régression linéaire, implémentable par un neurone seul, peut extraire n'importe qu'elle information/contingence encodée dans ces combinaisons complexes et dynamiques. Finalement, les entrées précédentes, qu'elles soient sensorielles ou motrices, à ces réseaux du CPF doivent être maintenues pour pouvoir influencer les traitements courants. Nous soutenons que les représentations de ces contextes définis par ces entrées précédentes doivent être exprimées explicitement et retournées aux réseaux locaux du CPF pour influencer les combinaisons courantes à l'origine de la représentation des contingences / In order to adapt to new situations, primates must be able to recognize these situations. How the cortex represents contingencies in its activity is the main subject of this thesis. First, complex new situations are often explained by the interaction between sensory, internal and motor information. Recent studies have shown that single-neuron activities referred to as mixed selectivity which are ubiquitous in the prefrontal cortex (PFC) are a possible mechanism to represent arbitrary interaction between information defining a contingency. In parallel, a recent area of reasearch referred to as Reservoir Computing has demonstrated that recurrent neural networks have the property of recombining present and past inputs into a higher dimensional space thereby providing a pre-coding of an essentially universal set of combinations which can then be selected and used arbitrarily for their relevance to the task at hand. Combining these two approaches we argue that the highly recurrent nature of local prefrontal connectivity is at the origin of dynamic form of mixed selectivity. Also, we attempt to demonstrate that a simple linear regression, implementable by a single neuron, can extract any information/ contingency encoded in these highly complex and dynamic combinations. In addition, previous inputs, whether sensory or motor, to these PFC networks must be maintained in order to influence current processing and behavioral demand. We argue that representations of contexts defined by these past inputs must be expressed explicitely and fed back to the local PFC networks in order to influence the current combinations at the origin of contingencies representation
Identifer | oai:union.ndltd.org:theses.fr/2014LYO10091 |
Date | 02 June 2014 |
Creators | Enel, Pierre |
Contributors | Lyon 1, Dominey, Peter Ford |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds