Return to search

EFFECT OF TEMPERATURE ON THE ANAEROBIC DIGESTION PROCESS AT BOTH LABORATORY AND FIELD SCALE USING A MIXED WASTE FEEDSTOCK OF SEMI-DIGESTED SLUDGE AND MUNICIPAL SOLID WASTE

ABSTRACT Bioreactor landfill operation has been promoted as a means of accelerating the degradation of waste for over 30 years. Accelerating the degradation of waste enables better predictability in biogas production and reduces aftercare costs. Most bioreactor landfill trials focus on the effect of leachate recirculation on otherwise conventional landfill cells. However, there is a range of design and operational measures that can be implemented with standard landfilling machinery to further enhance degradation. This thesis explores degradation rates that can be achieved in a landfill cell, designed to maximise degradation rate, with the constraint that it be constructed by standard earthmoving equipment, the waste be crudely shredded by sheep foot compactors to expose waste, and leachate recirculation be operable by landfill personnel. The major departures of these test cells from a conventional landfill cell operation were: the cells were only 3m deep; MSW loaded into the cell was crushed and bags ruptured with a sheep foot compactor; MSW was pre-mixed prior placement with digested sludge, as a ratio such that the buffering capacity of the sludge was equivalent to an amount of NaHCO3 known to successfully buffer the digestion of packed beds of MSW (10gL-1 NaHCO3 in packed bed at field capacity moisture content plus excess leachate equal to 10% of the bed volume (Lai et al 2001); and the waste was placed rather than compacted into the cell. The thesis examines the performance of two test cells, the second only containing MSW and inoculated and buffered by sequencing with the first. These performances are compared with an exhaustive set of control digestions in 200L laboratory reactors. The laboratory reactors were packed with 50kg sub-samples of the waste used in the cells, shredded to sub 5cm size. The laboratory reactors primarily focussed on the effect of temperature on degradation rates, to identify the optimum degradation rate for this sludge and MSW mixture. The laboratory scale reactors produced 231 L and 202 L of methane per kgVS at the mesophilic temperatures of 38°C and 45°C respectively. The degradation was faster in the 45°C reactor where methane production was completely exhausted after 35 days. A laboratory reactor operated at 55°C reactor showed little degradation activity. The pH of this reactor was initially over 8.5, and ammonia inhibition was suspected. However, the reactor did not respond to pH adjustments with hydrochloric acid, and subsequent step decreases in temperature did not have an effect until 47°C, where degradation suddenly accelerated. This suggests the methanogenic consortia in the sludge could not adapt to thermophilic temperatures. This was confirmed in the 63°C reactor which acidified and did not produce methane, until leachate from this reactor was transferred to the 45°C reactor where an established methanogenic community converted the soluble COD to methane. In order to compare laboratory reactor performance with the general literature, pure cellulose was added in a fed-batch fashion to the stabilised 38°C and 47°C leach-beds. The beds were fed under starved conditions, to clearly distinguish degradation products from the cellulose from background levels. This also allowed for the estimation of biomass growth by measuring the uptake of NH4-N, as all other bio-available N sources such as protein and amino acids were reduced to NH4-N under these starved conditions. Hydrolysis rates were determined to be 0.12±0.01 d-1 and 0.14±0.026 d-1 at the 38°C and 47°C temperatures. Degradation in the two test cells was completed within a 7 month period. Temperature in the cells was maintained between 25 – 30°C by biological activity, levels that were above ambient temperatures, but below ideal mesophilic conditions. Methane composition rapidly approached 50% in both cells, and biogas flow rates were consistent with a degradation timeframe in the order of less than year. Full flow rate data was not obtained from these trials due to mechanical problems with flow meters, however vigorous gas production was evident throughout the trial by monitoring gas composition, and the ballooning effect of the top cover. To confirm the degradation rates in the test cells, samples were collected from the second test cell and digested in laboratory reactors. Methane yields were only 2.4 and 6.4 L CH4 kgVS-1 confirming virtual exhaustion of biogas potential within 7 months of sequencing this MSW cell with the first MSW:sludge test cell. This is the first systematic experimental program that places the degradation performance of a test cell in the context of the potential degradation rate achievable with fine shredding, temperature control and thorough inoculation and buffering. Economically, in cases where degradation residues are left insitu as in landfills, the degradation enhancement in the test cells would effectively yield as much benefit as enhancing the degradation rate to a two to three week timeframe typical of an anaerobic digester (Clarke 2000).

Identiferoai:union.ndltd.org:ADTP/254233
CreatorsPeta Radnidge
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0019 seconds