Return to search

Properties of inorganically surface-modified zeolites and zeolite/ polyimide nanocomposite membranes

Mixed matrix membranes (MMMs) consisting of a polymer bulk phase and an inorganic dispersed phase have the potential to provide a more selective membrane because they incorporate the selectivity of a zeolite dispersed phase while maintaining the ease of use of a polymer membrane. A critical problem in MMM applications is control over the polymer-zeolite interface adhesion during fabrication which can detrimentally impact membrane performance. In this work, MgOxHy (1≤x≤2, 0≤y≤2) nanostructures have been grown on pure-silica MFI and aluminosilicate LTA zeolites through four surface deposition techniques: Grignard decomposition reactions, solvothermal and modified solvothermal depositions, and ion-exchange induced surface crystallization. The structural properties of the surface nanostructures produced by each of the four methods were thoroughly characterized for their morphology, crystallinity, porosity, surface area, elemental composition, and these properties were used to predict the method’s suitability for use in composite membranes. The nanostructured zeolites were used in mixed matrix membranes (MMMs) at two MMMs weight loadings. The dispersion, mechanical properties, and CO₂/CH₄ gas separation properties were measured MMMs made with each method of functionalized LTA. All functionalization methods improve adhesion with the polymer observable by microscopy, the dispersion of particles, and the elastic modulus and hardness of the membrane. Gas permeation measurements prove the quality and effectiveness of the Ion Exchange membrane for CO₂/CH₄ separation by its significant increase in selectivity over the pure polymer. Lastly, the interface between the two materials was studied by probing the interfacial polymer mobility using NMR spin-spin relaxation measurements and mechanical mapping of membrane cross sections. It was shown that the nanostructures have both steric and chemical interactions with the polymer. Mapping of the elastic modulus indicated that functionalization methods that resulted in poorer zeolite coverage also disrupted the mechanical properties of the membrane at the interface of the materials. The investigations in this thesis provide detailed structure-property relationships of surface-modified molecular sieves and nanocomposite membranes fabricated using these materials, allowing a rational approach to the design of such materials and membranes.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/49069
Date20 September 2013
CreatorsLydon, Megan Elizabeth
ContributorsJones, Christopher W., Nair, Sankar
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0022 seconds