Return to search

Flow through Rigid Vegetation Hydrodynamics

Better understanding of the role of vegetation in the transport of fluid and pollutants requires improved knowledge of the detailed flow structure within the vegetation. Instead of spatial averaging, this study uses discrete measurements at multiple locations within the canopy to develop velocity and turbulence intensity profiles and observe the changes in the flow characteristics as water travels through a vegetation array simulated by rigid dowels. Velocity data were collected with a one dimensional laser Doppler velocimeter (LDV) under single layer emergent and submerged flow conditions, and through two layers of vegetation. The effects of dowel arrangement, density, and roughness are also examined under the single layer experiments. The results show that the velocity within the vegetation array is constant with depth and the velocity profile is logarithmic above it. The region immediately behind a dowel, where the vorticity and turbulence intensity are highest, is characterized by a velocity spike near the bed and an inflection point near the top of the dowel arrays. With two dowel layers, the velocity profile in the region behind a tall dowel exhibits multiple inflection points and the highest turbulence intensities are found there. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35068
Date02 October 2008
CreatorsLiu, David
ContributorsCivil Engineering, Diplas, Panayiotis, Gutierrez, Marte S., Hession, W. Cully
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationLiuMS.pdf

Page generated in 0.0119 seconds