Return to search

A numerical study of the stability of a stratified mixing layer

Using a two-dimensional nonlinear numerical simulation of a (viscous) stratified shear layer, strong instabilities resulted from the resonant interaction of a long linearly neutrally stable wave and the corresponding fastest growing wave. This linearly fastest growing wave, with optimal initial conditions, grows initially at a rate five times that predicted by linear theory. With other initial conditions, the linearly fastest growing wave may actually decay. The possibility of this type of interaction is suggested by the weakly nonlinear theory (cf. Maslowe, 1977). This coupled system of fourth order nonl inear partial differential equations was solved using a modified pseudospectral scheme for the spatial variables, incorporating the use of fast Fourier transforms to calculate spatial derivatives, and a second order Adams-Bashforth scheme for the temporal derivatives . / Dans cette etude, en utilisant une simulation numerique nonlineaire a deux dimensions d'une couche stratifiee, decollee et visqueuse, on obtint des resultats interessants a partir des cas correspondant a l'interaction resonnante d'une onde longue a stabilite neutre et d'une onde courte qui croit la plus rapidement selon la theorie lineaire. En utilisant certaines conditions initiales, l'onde courte croit initialement a un taux cinq fois superieur a celui predit par la theorie lineaire. Avec d'autres conditions initiales l'onde courte decroit. La possibilite de ce genre d'interaction est predite par la theorie faiblement nonlineaire (voir Maslowe, 1977). Ce systeme couple aux equations nonlineaires du quatrieme ordre aux derivees partielles, est resolu par une methode pseudo-spectrale modifiee, pour les variables spatiales, et une methode Adams-Bashforth du second ordre pour les derivees temporelles. fr

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.29742
Date January 1982
CreatorsCollins, David A.
ContributorsSherwin A. Maslowe (supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mathematics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 000187013, Theses scanned by McGill Library.

Page generated in 0.0264 seconds