The fusion of computers and communications has promised to herald the age of information super-highway over high speed communication networks where the ultimate goal is to enable a multitude of users at any place, access information from anywhere and at any time. This, in a nutshell, is the goal envisioned by the Personal Communication Services (PCS) and Xerox's ubiquitous computing. In view of the remarkable growth of the mobile communication users in the last few years, the radio frequency spectrum allocated by the FCC (Federal Communications Commission) to this service is still very limited and the usable bandwidth is by far much less than the expected demand, particularly in view of the emergence of the next generation wireless multimedia applications like video-on-demand, WWW browsing, traveler information systems etc. Proper management of available spectrum is necessary not only to accommodate these high bandwidth applications, but also to alleviate problems due to sudden explosion of traffic in so called hot cells.
In this dissertation, we have developed simple load balancing techniques to cope with the problem of tele-traffic overloads in one or more hot cells in the system. The objective is to ease out the high channel demand in hot cells by borrowing channels from suitable cold cells and by proper assignment (or, re-assignment) of the channels among the users. We also investigate possible ways of improving system capacity by rescheduling bandwidth in case of wireless multimedia traffic. In our proposed scheme, traffic using multiple channels releases one or more channels to increase the carried traffic or throughput in the system. Two orthogonal QoS parameters, called carried traffic and bandwidth degradation, are identified and a cost function describing the total revenue earned by the system from a bandwidth degradation and call admission policy, is formulated. A channel sharing scheme is proposed for co-existing real-time and non-real-time traffic and analyzed using a Markov modulated Poisson process (MMPP) based queueing model.
The location management problem in mobile computing deals with the problem of a combined management of location updates and paging in the network, both of which consume scarce network resources like bandwidth, CPU cycles etc. An easily implementable location update scheme is developed which considers per-user mobility pattern on top of the conventional location area based approach and computes an update strategy for each user by minimizing the average location management cost. The cost optimization problem is elegantly solved using a genetic algorithm.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc278885 |
Date | 12 1900 |
Creators | Sen, Sanjoy Kumar |
Contributors | Das, Sajal K., Jacob, Roy Thomas, Tate, Stephen B., Brand, Neal E., Basu, Kaylan |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | xviii, 163 leaves : ill., Text |
Rights | Public, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved., Sen, Sanjoy Kumar |
Page generated in 0.0018 seconds