To support increasingly sophisticated sensors and resource-hungry applications with the current-used Lithium-based batteries and to augment mobile computing power further, the concept of the Cloudlet-based offloading is proposed which enables to migrate part of application computing tasks from battery-limited low-capacity mobile elements to the local edge. Such Cloudlet-based offloading technologies extend the provisioning of computing and storage capabilities from remote Cloud Data Centers to the proximity of end users via heterogeneous networks. However, Cloudlet-based offloading is required to coordinate among User Equipment, inter-Cloudlet nodes and remote Cloud Data Centers, which emerges new challenges and issues regarding how to enable Cloudlet-based offloading in the context of mobile edge environment and how to achieve execution- and energy-efficient offloading allocation under limited available resources.
In this dissertation, a Cloudlet-based Mobile Cloud offloading prototype is first proposed. A mechanism for handling diverse computing resources is described; by adopting it, idle public resources can be easily configured as additional computing capabilities in the virtual resource pool. A fast deployment model is built to relieve the migration and installation cost when adapting the platform. An energy-saving strategy is utilized to reduce the consumption of computing resources. Security components are implemented to protect sensitive information and block malicious attacks in the cloud.
Concerning the limited processing capability on the edge, a task-centric energy-aware Cloudlet-based Mobile Cloud model is formulated. A Cloudlet task-based offloading mechanism is proposed to achieve energy-aware offloading resource preparation and scheduling on the Cloudlet. A Cloud task-centric scheduling algorithm is presented for the green collaborative offloading processing between Cloudlet and remote Cloud.
Considering the dynamic and heterogeneity of the offloading environment, a hybrid offloading model to solve the heterogeneous resource-constraint offloading issues on the dynamic Cloudlets. A queue-based offloading framework is developed to formulate and analyze the mixed migration-based and partition-based offloading behaviours on the Cloudlet. The execution and energy-aware heterogeneous offloading resource allocation problem is formalized and solved. A time series-based load prediction model is designed on the Cloudlet to achieve fine-grain proactive resource allocation.
Regarding the mobility of User Equipment and the diverse priority of offloading tasks, an edge-based mobility-aware offloading model is modeled to solve the intra-Cloudlet offloading scheduling issue and inter-Cloudlet load-aware heterogeneous resource allocation issue. A priority-based queueing model is designed to formulate the intra-Cloudlet mobility-aware offloading scheduling problem, resolved by a heuristic solution. The energy-aware inter-Cloudlet resource selection procedure is formalized in a mobility-aware multi-site resource allocation model, which is further solved by lightweight dynamic load balancing.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/40562 |
Date | 28 May 2020 |
Creators | Guan, Shichao |
Contributors | Boukerche, Azzedine |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0023 seconds