Aktuelle 3D-Stadtmodelle werden immer wichtiger in verschiedenen städtischen Anwendungsbereichen. Im Moment dienen sie als Grundlage bei der Stadtplanung, virtuellem Tourismus und Navigationssystemen.
Mittlerweile ist der Bedarf an 3D-Gebäudemodellen dramatisch gestiegen. Der Grund dafür sind hauptsächlich Navigationssysteme und Onlinedienste wie Google Earth. Die Mehrheit der Untersuchungen zur Rekonstruktion von Gebäudemodellen von Luftaufnahmen konzentriert sich ausschließlich auf Dachmodellierung. Jedoch treiben Anwendungen wie Virtuelle Realität und Navigationssysteme die Nachfrage nach detaillieren Gebäudemodellen, die nicht nur die geometrischen Aspekte sondern auch semantische Informationen beinhalten, stark an. Urbanisierung und Industrialisierung beeinflussen das Wachstum von urbaner Vegetation drastisch, welche als ein wesentlicher Teil des Lebensraums angesehen wird. Aus diesem Grund werden Aufgaben wie der Ökosystemüberwachung, der Verbesserung der Planung und des Managements von urbanen Regionen immer mehr Aufmerksamkeit geschenkt. Gleichermaßen hat die Erkennung und Modellierung von Bäumen im Stadtgebiet sowie die kontinuierliche Überprüfung ihrer Inventurparameter an Bedeutung gewonnen.
Die steigende Nachfrage nach 3D-Gebäudemodellen, welche durch Fassadeninformation ergänzt wurden, und Informationen über einzelne Bäume im städtischen Raum erfordern effiziente Extraktions- und Rekonstruktionstechniken, die hochgradig automatisiert sind. In diesem Zusammenhang ist das Wissen über die geometrische Form jedes Objektteils ein wichtiger Aspekt. Heutzutage, wird das Mobile Laser Scanning (MLS) vermehrt eingesetzt um Objekte im städtischen Umfeld zu erfassen und es entwickelt sich zur Hauptquelle von Daten für die Modellierung von urbanen Objekten. Eine Vielzahl von Objekten wurde schon mit Daten von MLS rekonstruiert. Außerdem wurden bereits viele Methoden für die Verarbeitung von MLS-Daten mit dem Ziel urbane Objekte zu erkennen und zu rekonstruieren vorgeschlagen. Die 3D-Punkwolke einer städtischen Szene stellt eine große Menge von Messungen dar, die viele Objekte von verschiedener Größe umfasst, komplexe und unvollständige Strukturen sowie Löcher (Rauschen und Datenlücken) enthält und eine inhomogene Punktverteilung aufweist. Aus diesem Grund ist die Verarbeitung von MLS-Punktwolken im Hinblick auf die Extrahierung und Modellierung von wesentlichen und charakteristischen Fassadenstrukturen sowie Bäumen von großer Bedeutung.
In der Arbeit werden zwei neue Methoden für die Rekonstruktion von Gebäudefassaden und die Extraktion von Bäumen aus MLS-Punktwolken vorgestellt, sowie ihre Anwendbarkeit in der städtischen Umgebung analysiert.
Die erste Methode zielt auf die Rekonstruktion von Gebäudefassaden mit expliziter semantischer Information, wie beispielsweise Fenster, Türen, und Balkone. Die Rekonstruktion läuft vollautomatisch ab. Zu diesem Zweck werden einige Algorithmen vorgestellt, die auf dem Vorwissen über die geometrische Form und das Arrangement von Fassadenmerkmalen beruhen. Die initiale Klassifikation, mit welcher die Punkte in Objektpunkte und Bodenpunkte unterschieden werden, wird über eine lokale Höhenhistogrammanalyse zusammen mit einer planaren Region-Growing-Methode erzielt. Die Punkte, die als zugehörig zu Objekten klassifiziert werden, werden anschließend in Ebenen segmentiert, welche als Basiselemente der Merkmalserkennung angesehen werden können. Information über die Gebäudestruktur kann in Form von Regeln und Bedingungen erfasst werden, welche die wesentlichen Steuerelemente bei der Erkennung der Fassadenmerkmale und der Rekonstruktion des geometrischen Modells darstellen. Um Merkmale wie Fenster oder Türen zu erkennen, die sich an der Gebäudewand befinden, wurde eine löcherbasierte Methode implementiert. Einige Löcher, die durch Verdeckungen entstanden sind, können anschließend durch einen neuen regelbasierten Algorithmus eliminiert werden. Außenlinien der Merkmalsränder werden durch ein Polygon verbunden, welches das geometrische Modell repräsentiert, indem eine Methode angewendet wird, die auf geometrischen Primitiven basiert. Dabei werden die topologischen Relationen unter Beachtung des Vorwissens über die primitiven Formen analysiert. Mögliche Außenlinien können von den Kantenpunkten bestimmt werden, welche mit einer winkelbasierten Methode detektiert werden können. Wiederkehrende Muster und Ähnlichkeiten werden ausgenutzt um geometrische und topologische Ungenauigkeiten des rekonstruierten Modells zu korrigieren.
Neben der Entwicklung des Schemas zur Rekonstruktion des 3D-Fassadenmodells, sind die Segmentierung einzelner Bäume und die Ableitung von Attributen der städtischen Bäume im Fokus der Untersuchung. Die zweite Methode zielt auf die Extraktion von individuellen Bäumen aus den Restpunktwolken. Vorwissen über Bäume, welches speziell auf urbane Regionen zugeschnitten ist, wird im Extraktionsprozess verwendet. Der formbasierte Ansatz zur Extraktion von Einzelbäumen besteht aus einer Reihe von Schritten. In jedem Schritt werden Objekte in Abhängigkeit ihrer geometrischen Merkmale gefunden. Stämme werden unter Ausnutzung der Hauptrichtung der Punktverteilung identifiziert. Dafür werden Punktsegmente gesucht, die einen Teil des Baumstamms repräsentieren. Das Ergebnis des Algorithmus sind segmentierte Bäume, welche genutzt werden können um genaue Informationen über die Größe und Position jedes einzelnen Baumes abzuleiten. Einige Beispiele der Ergebnisse werden in der Arbeit angeführt.
Die Zuverlässigkeit der Algorithmen und der Methoden im Allgemeinen wurden unter Verwendung von drei Datensätzen, die mit verschiedenen Laserscannersystemen aufgenommen wurden, verifiziert. Die Untersuchung zeigt auch das Potential sowie die Einschränkungen der entwickelten Methoden wenn sie auf verschiedenen Datensätzen angewendet werden. Die Ergebnisse beider Methoden wurden quantitativ bewertet unter Verwendung einer Menge von Maßen, die die Qualität der Fassadenrekonstruktion und Baumextraktion betreffen wie Vollständigkeit und Genauigkeit. Die Genauigkeit der Fassadenrekonstruktion, der Baumstammdetektion, der Erfassung von Baumkronen, sowie ihre Einschränkungen werden diskutiert. Die Ergebnisse zeigen, dass MLS-Punktwolken geeignet sind um städtische Objekte detailreich zu dokumentieren und dass mit automatischen Rekonstruktionsmethoden genaue Messungen der wichtigsten Attribute der Objekte, wie Fensterhöhe und -breite, Flächen, Stammdurchmesser, Baumhöhe und Kronenfläche, erzielt werden können. Der gesamte Ansatz ist geeignet für die Rekonstruktion von Gebäudefassaden und für die korrekte Extraktion von Bäumen sowie ihre Unterscheidung zu anderen urbanen Objekten wie zum Beispiel Straßenschilder oder Leitpfosten. Aus diesem Grund sind die beiden Methoden angemessen um Daten von heterogener Qualität zu verarbeiten. Des Weiteren bieten sie flexible Frameworks für das viele Erweiterungen vorstellbar sind. / Up-to-date 3D urban models are becoming increasingly important in various urban application areas, such as urban planning, virtual tourism, and navigation systems. Many of these applications often demand the modelling of 3D buildings, enriched with façade information, and also single trees among other urban objects. Nowadays, Mobile Laser Scanning (MLS) technique is being progressively used to capture objects in urban settings, thus becoming a leading data source for the modelling of these two urban objects. The 3D point clouds of urban scenes consist of large amounts of data representing numerous objects with significant size variability, complex and incomplete structures, and holes (noise and data gaps) or variable point densities. For this reason, novel strategies on processing of mobile laser scanning point clouds, in terms of the extraction and modelling of salient façade structures and trees, are of vital importance. The present study proposes two new methods for the reconstruction of building façades and the extraction of trees from MLS point clouds.
The first method aims at the reconstruction of building façades with explicit semantic information such as windows, doors and balconies. It runs automatically during all processing steps. For this purpose, several algorithms are introduced based on the general knowledge on the geometric shape and structural arrangement of façade features. The initial classification has been performed using a local height histogram analysis together with a planar growing method, which allows for classifying points as object and ground points. The point cloud that has been labelled as object points is segmented into planar surfaces that could be regarded as the main entity in the feature recognition process. Knowledge of the building structure is used to define rules and constraints, which provide essential guidance for recognizing façade features and reconstructing their geometric models. In order to recognise features on a wall such as windows and doors, a hole-based method is implemented. Some holes that resulted from occlusion could subsequently be eliminated by means of a new rule-based algorithm. Boundary segments of a feature are connected into a polygon representing the geometric model by introducing a primitive shape based method, in which topological relations are analysed taking into account the prior knowledge about the primitive shapes. Possible outlines are determined from the edge points detected from the angle-based method. The repetitive patterns and similarities are exploited to rectify geometrical and topological inaccuracies of the reconstructed models.
Apart from developing the 3D façade model reconstruction scheme, the research focuses on individual tree segmentation and derivation of attributes of urban trees. The second method aims at extracting individual trees from the remaining point clouds. Knowledge about trees specially pertaining to urban areas is used in the process of tree extraction. An innovative shape based approach is developed to transfer this knowledge to machine language. The usage of principal direction for identifying stems is introduced, which consists of searching point segments representing a tree stem. The output of the algorithm is, segmented individual trees that can be used to derive accurate information about the size and locations of each individual tree.
The reliability of the two methods is verified against three different data sets obtained from different laser scanner systems. The results of both methods are quantitatively evaluated using a set of measures pertaining to the quality of the façade reconstruction and tree extraction. The performance of the developed algorithms referring to the façade reconstruction, tree stem detection and the delineation of individual tree crowns as well as their limitations are discussed. The results show that MLS point clouds are suited to document urban objects rich in details. From the obtained results, accurate measurements of the most important attributes relevant to the both objects (building façades and trees), such as window height and width, area, stem diameter, tree height, and crown area are obtained acceptably. The entire approach is suitable for the reconstruction of building façades and for the extracting trees correctly from other various urban objects, especially pole-like objects. Therefore, both methods are feasible to cope with data of heterogeneous quality. In addition, they provide flexible frameworks, from which many extensions can be envisioned.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-159872 |
Date | 28 January 2015 |
Creators | Nalani, Hetti Arachchige |
Contributors | Technische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. habil. Hans-Gerd Maas, Prof. Dr. habil. Hans-Gerd Maas, Prof. Dr. Eberhard Gülch, Prof. Dr. Norbert Haala |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0035 seconds