Orientador: Jacques Wainer / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T02:06:24Z (GMT). No. of bitstreams: 1
Pinheiro_PauloGurgel_D.pdf: 41476694 bytes, checksum: f3d5b1e2aa32aa6f00ef7ac689a261e2 (MD5)
Previous issue date: 2013 / Resumo: Localização de robôs móveis é uma das áreas mais exploradas da robótica devido a sua importância para a resolução de problemas, como: navegação, mapeamento e SLAM. Muitos trabalhos apresentaram soluções envolvendo cooperação, comunicação e exploração do ambiente, onde em geral a localização é obtida através de ações randômicas ou puramente orientadas pelo estado de crença. Nesta tese, é apresentado um modelo de planejamento para localização utilizando POMDP e Localização de Markov, que indicaria a melhor ação que o robô deve efetuar em cada momento, com o objetivo de diminuir a quantidade de passos. O foco está principalmente em: i) problemas de difícil localização: onde não há landmark ou informação extra no ambiente que auxilie o robô, ii) situações de performance crítica: onde o robô deve evitar passos randômicos e o gasto de energia e, por último, iii) situações com múltiplas missões. Sabendo que um robô é projetado para desempenhar missões, será proposto, neste trabalho, um modelo onde essas missões são consideradas em paralelo com a localização. Planejar para cenários com múltiplos ambientes é um desafio devido a grande quantidade de estados que deve ser tratada. Para esse tipo de problema, será apresentado um modelo de compressão de mapas que utiliza padrões arquiteturais e de design, como: quantidade de portas, paredes ou área total de um ambiente, para condensar informações que possam ser redundantes. O modelo baseia-se na similaridade das características de desing para agrupar ambientes similares e combiná-los, gerando um único mapa representante que possui uma quantidade de estados menor que a soma total de todos os estados dos ambientes do grupo. Planos em POMDP são gerados apenas para os representantes e não para todo o mapa. Finalmente, será apresentado o modelo hierárquico onde a localização é executada em duas camadas. Na camada superior, o robô utiliza os planos POMDP e os mapas compactos para estimar a grossa estimativa de sua localização e, na camada inferior, utiliza POMDP ou Localização de Markov para a obtenção da postura mais precisa. O modelo hierárquico foi demonstrado com experimentos utilizando o simulador V-REP, e o robô Pioneer 3-DX. Resultados comparativos mostraram que o robô utilizando o modelo proposto, foi capaz de realizar o processo de localização em cenários com múltiplos ambientes e cumprir a missão, mantendo a precisão com uma significativa redução na quantidade de passos efetuados / Abstract: Mobile Robot localization is one of the most explored areas in robotics due to its importance for solving problems, such as navigation, mapping and SLAM. In this work, we are interested in solving global localization problems, where the initial pose of the robot is completely unknown. Several works have proposed solutions for localization focusing on robot cooperation, communication or environment exploration, where the robot's pose is often found by a certain amount of random actions or state belief oriented actions. In order to decrease the total steps performed, we will introduce a model of planning for localization using POMDPs and Markov Localization that indicates the optimal action to be taken by the robot for each decision time. Our focus is on i) hard localization problems, where there are no special landmarks or extra features over the environment to help the robot, ii) critical performance situation, where the robot is required to avoid random actions and the waste of energy roaming over the environment, and iii) multiple missions situations. Aware the robot is designed to perform missions, we have proposed a model that runs missions and the localization process, simultaneously. Also, since the robot can have different missions, the model computes the planning for localization as an offline process, but loading the missions at runtime. Planning for multiple environments is a challenge due to the amount of states we must consider. Thus, we also proposed a solution to compress the original map, creating a smaller topological representation that is easier and cheaper to get plans done. The map compression takes advantage of the similarity of rooms found especially in offices and residential environments. Similar rooms have similar architectural design features that can be shared. To deal with the compressed map, we proposed a hierarchical approach that uses light POMDP plans and the compressed map on the higher layer to find the gross pose, and on the lower layer, decomposed maps to find the precise pose. We have demonstrated the hierarchical approach with the map compression using both V-REP Simulator and a Pioneer 3-DX robot. Comparing to other active localization models, the results show that our approach allowed the robot to perform both localization and the mission in a multiple room environment with a significant reduction on the number of steps while keeping the pose accuracy / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/275601 |
Date | 16 August 2013 |
Creators | Pinheiro, Paulo Gurgel, 1983- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Wainer, Jacques, 1958-, Pellegrini, Jerônimo, Cardozo, Eleri, Tonidandel, Flavio, Goldenstein, Siome Klein |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 157 p. : il., application/octet-stream |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds