A fundamental problem in mobile robotics is the exploration of unknown fields that might be inaccessible or hostile to humans. Exploration missions of great importance include geological survey, disaster prediction and recovery, and search and rescue. For missions in relatively large regions, mobile sensor networks (MSN) are ideal candidates. The basic idea of MSN is that mobile robots form a sensor network that collects information, meanwhile, the behaviors of the mobile robots adapt to changes in the environment. To design feasible motion patterns and control of MSN, we draw inspiration from biology, where animal groups demonstrate amazingly complex but adaptive collective behaviors to changing environments.
The main contributions of this thesis include platform independent mathematical models for the coupled motion-sensing dynamics of MSN and biologically-inspired provably convergent cooperative control and filtering algorithms for MSN exploring unknown scalar fields in both 2D and 3D spaces. We introduce a novel model of behaviors of mobile agents that leads to fundamental theoretical results for evaluating the feasibility and difficulty of exploring a field using MSN. Under this framework, we propose and implement source seeking algorithms using MSN inspired by behaviors of fish schools. To balance the cost and performance in exploration tasks, a switching strategy, which allows the mobile sensing agents to switch between individual and cooperative exploration, is developed. Compared to fixed strategies, the switching strategy brings in more flexibility in engineering design. To reveal the geometry of 3D spaces, we propose a control and sensing co-design for MSN to detect and track a line of curvature on a desired level surface.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/48940 |
Date | 16 September 2013 |
Creators | Wu, Wencen |
Contributors | Zhang, Fumin |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0019 seconds