Nous argumentons que l'estimation de l'information mutuelle entre des ensembles de variables aléatoires continues de hautes dimensionnalités peut être réalisée par descente de gradient sur des réseaux de neurones.
Nous présentons un estimateur neuronal de l'information mutuelle (MINE) dont la complexité croît linéairement avec la dimensionnalité des variables et la taille de l'échantillon, entrainable par retro-propagation, et fortement consistant au sens statistique. Nous présentons aussi une poignée d'application ou MINE peut être utilisé pour minimiser ou maximiser l'information mutuelle. Nous appliquons MINE pour améliorer les modèles génératifs adversariaux. Nous utilisons aussi MINE pour implémenter la méthode du goulot d'étranglement de l'information dans un cadre de classification supervisé. Nos résultats montrent un gain substantiel en flexibilité et performance. / We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in the settings.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/25093 |
Date | 09 1900 |
Creators | Belghazi, Mohamed |
Contributors | Courville, Aaron |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0033 seconds