Return to search

Gestion multisite de workflows scientifiques dans le cloud / Multisite management of scientific workflows in the cloud

Les in silico expérimentations scientifiques à grande échelle contiennent généralement plusieurs activités de calcule pour traiter big data. Workflows scientifiques (SWfs) permettent aux scientifiques de modéliser les activités de traitement de données. Puisque les SWfs moulinent grandes quantités de données, les SWfs orientés données deviennent un problème important. Dans un SWf orienté donnée, les activités sont liées par des dépendances de données ou de contrôle et une activité correspond à plusieurs tâches pour traiter les différentes parties de données. Afin d’exécuter automatiquement les SWfs orientés données, Système de management pour workflows scientifiques (SWfMSs) peut être utilisé en exploitant High Perfmance Comuting (HPC) fournisse par un cluster, grille ou cloud. En outre, SWfMSs génèrent des données de provenance pour tracer l’exécution des SWfs.Puisque le cloud fournit des services stables, diverses ressources, la capacité de calcul et de stockage virtuellement infinie, il devient une infrastructure intéressante pour l’exécution de SWf. Le cloud données essentiellement trois types de services, i.e. Infrastructure en tant que Service (IaaS), Plateforme en tant que Service (PaaS) et Logiciel en tant que Service (SaaS). SWfMSs peuvent être déployés dans le cloud en utilisant des Machines Virtuelles (VMs) pour exécuter les SWfs orientés données. Avec la méthode de pay-as-you-go, les utilisateurs de cloud n’ont pas besoin d’acheter des machines physiques et la maintenance des machines sont assurée par les fournisseurs de cloud. Actuellement, le cloud généralement se compose de plusieurs sites (ou centres de données), chacun avec ses propres ressources et données. Du fait qu’un SWf orienté donnée peut-être traite les données distribuées dans différents sites, l’exécution de SWf orienté donnée doit être adaptée aux multisite cloud en utilisant des ressources de calcul et de stockage distribuées.Dans cette thèse, nous étudions les méthodes pour exécuter SWfs orientés données dans un environnement de multisite cloud. Certains SWfMSs existent déjà alors que la plupart d’entre eux sont conçus pour des grappes d’ordinateurs, grille ou cloud d’un site. En outre, les approches existantes sont limitées aux ressources de calcul statique ou à l’exécution d’un seul site. Nous vous proposons des algorithmes pour partitionner SWfs et d’un algorithme d’ordonnancement des tâches pour l’exécution des SWfs dans un multisite cloud. Nos algorithmes proposés peuvent réduire considérablement le temps global d’exécution d’un SWf dans un multisite cloud.En particulier, nous proposons une solution générale basée sur l’ordonnancement multi-objectif afin d’exécuter SWfs dans un multisite cloud. La solution se compose d’un modèle de coût, un algorithme de provisionnement de VMs et un algorithme d’ordonnancement des activités. L’algorithme de provisionnement de VMs est basé sur notre modèle de coût pour générer les plans à provisionner VMs pour exécuter SWfs dans un cloud d’un site. L’algorithme d’ordonnancement des activités permet l’exécution de SWf avec le coût minimum, composé de temps d’exécution et le coût monétaire, dans un multisite cloud. Nous avons effectué beaucoup d’expérimentations et les résultats montrent que nos algorithmes peuvent réduire considérablement le coût global pour l’exécution de SWf dans un multisite cloud. / Large-scale in silico scientific experiments generally contain multiple computational activities to process big data. Scientific Workflows (SWfs) enable scientists to model the data processing activities. Since SWfs deal with large amounts of data, data-intensive SWfs is an important issue. In a data-intensive SWf, the activities are related by data or control dependencies and one activity may consist of multiple tasks to process different parts of experimental data. In order to automatically execute data-intensive SWfs, Scientific Work- flow Management Systems (SWfMSs) can be used to exploit High Performance Computing (HPC) environments provided by a cluster, grid or cloud. In addition, SWfMSs generate provenance data for tracing the execution of SWfs.Since a cloud offers stable services, diverse resources, virtually infinite computing and storage capacity, it becomes an interesting infrastructure for SWf execution. Clouds basically provide three types of services, i.e. Infrastructure-as-a-Service (IaaS), Platform- as-a-Service (PaaS) and Software-as-a-Service (SaaS). SWfMSs can be deployed in the cloud using Virtual Machines (VMs) to execute data-intensive SWfs. With a pay-as-you- go method, the users of clouds do not need to buy physical machines and the maintenance of the machines are ensured by the cloud providers. Nowadays, a cloud is typically made of several sites (or data centers), each with its own resources and data. Since a data- intensive SWf may process distributed data at different sites, the SWf execution should be adapted to multisite clouds while using distributed computing or storage resources.In this thesis, we study the methods to execute data-intensive SWfs in a multisite cloud environment. Some SWfMSs already exist while most of them are designed for computer clusters, grid or single cloud site. In addition, the existing approaches are limited to static computing resources or single site execution. We propose SWf partitioning algorithms and a task scheduling algorithm for SWf execution in a multisite cloud. Our proposed algorithms can significantly reduce the overall SWf execution time in a multisite cloud.In particular, we propose a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The general solution is composed of a cost model, a VM provisioning algorithm, and an activity scheduling algorithm. The VM provisioning algorithm is based on our proposed cost model to generate VM provisioning plans to execute SWfs at a single cloud site. The activity scheduling algorithm enables SWf execution with the minimum cost, composed of execution time and monetary cost, in a multisite cloud. We made extensive experiments and the results show that our algorithms can reduce considerably the overall cost of the SWf execution in a multisite cloud.

Identiferoai:union.ndltd.org:theses.fr/2016MONTT260
Date03 November 2016
CreatorsLiu, Ji
ContributorsMontpellier, Pacitti-Valduriez, Esther, Valduriez, Patrick
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0892 seconds