L'indexation des images est une étape indispensable pour valoriser un fond d'archive professionnel ou des collections d'images personnelles. Le "documentaliste" se doit de décrire précisément chaque document collecté dans la perspective de le retrouver. La difficulté est alors d'interpréter les contenus visuels et de les associer entre eux afin de couvrir différentes catégories qui peuvent être souvent très subjectives. Dans ce travail, nous nous inspirons du principe de l'apprentissage actif pour aider un utilisateur dans cette tâche de structuration de collections d'images. A partir de l'analyse des contenus visuels des images, différentes stratégies de sélection active sont développées afin d'aider un utilisateur à identifier et cerner des catégories pertinentes selon son point de vue. Nous proposons d'exprimer ce problème de classification d'images avec apprentissage actif dans le cadre du Modèle des Croyances Transférables (MCT). Ce formalisme facilite la combinaison, la révision et la représentation des connaissances que l'on peut extraire des images et des classes existantes à un moment donné. La méthode proposée dans ce cadre permet ainsi une représentation détaillée de la connaissance, notamment en représentant explicitement les cas d'appartenances à aucune ou à de multiples catégories, tout en quantifiant l'incertitude (liée entre autre au fossé sémantique) et le conflit entrainé par l'analyse des images selon différentes modalités (couleurs, orientations). Une interface homme-machine a été développée afin de valider notre approche sur des jeux de tests de référence, des collections d'images personnelles et des photographies professionnelles issues de l'Institut National de l'Audiovisuel. Une évaluation a été conduite auprès d'utilisateurs professionnels et a montré des résultats très positifs en termes d'utilité, d'utilisabilité et de satisfaction.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00410380 |
Date | 25 May 2009 |
Creators | Goëau, Hervé |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds