Dans cette thèse, je me suis interessé à l’identification partielle des effets
de traitements dans différents modèles de choix discrets avec traitements
endogènes. Les modèles d’effets de traitement ont pour but de mesurer l’impact
de certaines interventions sur certaines variables d’intérêt. Le type de
traitement et la variable d’intérêt peuvent être défini de manière générale
afin de pouvoir être appliqué à plusieurs différents contextes. Il y a plusieurs
exemples de traitement en économie du travail, de la santé, de l’éducation,
ou en organisation industrielle telle que les programmes de formation à l’emploi,
les techniques médicales, l’investissement en recherche et développement,
ou l’appartenance à un syndicat. La décision d’être traité ou pas n’est
généralement pas aléatoire mais est basée sur des choix et des préférences
individuelles. Dans un tel contexte, mesurer l’effet du traitement devient
problématique car il faut tenir compte du biais de sélection. Plusieurs versions paramétriques de ces modèles ont été largement étudiées
dans la littérature, cependant dans les modèles à variation discrète,
la paramétrisation est une source importante d’identification. Dans un tel
contexte, il est donc difficile de savoir si les résultats empiriques obtenus
sont guidés par les données ou par la paramétrisation imposée au modèle.
Etant donné, que les formes paramétriques proposées pour ces types de modèles
n’ont généralement pas de fondement économique, je propose dans cette
thèse de regarder la version nonparamétrique de ces modèles. Ceci permettra
donc de proposer des politiques économiques plus robustes. La principale difficulté dans l’identification nonparamétrique de fonctions
structurelles, est le fait que la structure suggérée ne permet pas d’identifier
un unique processus générateur des données et ceci peut être du soit à la présence
d’équilibres multiples ou soit à des contraintes sur les observables. Dans
de telles situations, les méthodes d’identifications traditionnelles deviennent
inapplicable d’où le récent développement de la littérature sur l’identification dans les modèles incomplets. Cette littérature porte une attention particuliere
à l’identification de l’ensemble des fonctions structurelles d’intérêt qui
sont compatibles avec la vraie distribution des données, cet ensemble est
appelé : l’ensemble identifié. Par conséquent, dans le premier chapitre de la thèse, je caractérise l’ensemble
identifié pour les effets de traitements dans le modèle triangulaire binaire.
Dans le second chapitre, je considère le modèle de Roy discret. Je caractérise
l’ensemble identifié pour les effets de traitements dans un modèle
de choix de secteur lorsque la variable d’intérêt est discrète. Les hypothèses
de sélection du secteur comprennent le choix de sélection simple, étendu et
généralisé de Roy.
Dans le dernier chapitre, je considère un modèle à variable dépendante
binaire avec plusieurs dimensions d’hétérogéneité, tels que les jeux d’entrées
ou de participation. je caractérise l’ensemble identifié pour les fonctions de
profits des firmes dans un jeux avec deux firmes et à information complète.
Dans tout les chapitres, l’ensemble identifié des fonctions d’intérêt sont
écrites sous formes de bornes et assez simple pour être estimées à partir des
méthodes d’inférence existantes. / In this thesis, I have been interested in the nonparametric (partial) identification
of structural potential outcome functions and Average Treatment
Effect (ATE) in various discrete models with endogenous selection and treatment.
This topic of treatment effect concerns measuring the impact of an intervention
on an outcome of interest. The type of treatments and outcomes
may be broadly defined in order to be applied in many different contexts.
There are many examples of treatment in economics (Labor, health, education,
trade, industrial organization) such that Job training programs, surgical
procedures, higher education level, research and development investment,
being a member of a trade union etc. The decision to be treated or not, is
usually not random but is based on individual choices or preferences. In such
a context, determining the impact of the treatment becomes an important
issue since we have to take into account the selectivity bias.
The parametric version of such models has been widely studied in the
literature, however in models with discrete variation, the parametrization is
a strong source of identification. Then, we don’t know if the empirical results
we obtain, are driven by the data or by the parametrization imposed on the
model. I propose to look at a fully nonparametric version of those models, in
order, to have more robust policy recommendations. The central challenge in this nonparametric structural identification is
that the hypothesized structure fails to identify a single generating process
for the data, either because of multiple equilibria or data observability
constraints. In such cases, many traditional identification techniques become
inapplicable and a framework for identification in incomplete models is developing,
with an initial focus on identification of the set of structural functions
of interest compatible with the true data distribution (hereafter identified
set).
Therefore, in the first chapter, I provide a full characterization of the identified set for the ATE in a binary triangular system.
In the second chapter, I consider a model with sector specific unobserved
heterogeneity. I provide the full characterization of the identified set for the
structural potential outcome functions of an instrumental variables model of
sectoral choice with discrete outcomes. Assumptions on selection include the
simple, extended and generalized Roy models.
In the last chapter, I consider a binary model with several unobserved
heterogeneity dimensions, such as entry and participation games. I provide
the full characterization of the identified set for the payoffs in 2 2 games
with perfect information, including duopoly entry and coordination games.
In all chapters, the identified set of the functions of interest are nonparametric
intersection bounds and are simple enough to lend themselves to
existing inference methods.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/10819 |
Date | 05 1900 |
Creators | Mourifié, Ismael Yacoub |
Contributors | Henry, Marc |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.003 seconds