Return to search

Analyse de la qualité des signatures manuscrites en-ligne par la mesure d'entropie

Cette thèse s'inscrit dans le contexte de la vérification d'identité par la signature manuscrite en-ligne. Notre travail concerne plus particulièrement la recherche de nouvelles mesures qui permettent de quantifier la qualité des signatures en-ligne et d'établir des critères automatiques de fiabilité des systèmes de vérification. Nous avons proposé trois mesures de qualité faisant intervenir le concept d'entropie. Nous avons proposé une mesure de qualité au niveau de chaque personne, appelée "Entropie personnelle", calculée sur un ensemble de signatures authentiques d'une personne. L'originalité de l'approche réside dans le fait que l'entropie de la signature est calculée en estimant les densités de probabilité localement, sur des portions, par le biais d'un Modèle de Markov Caché. Nous montrons que notre mesure englobe les critères habituels utilisés dans la littérature pour quantifier la qualité d'une signature, à savoir: la complexité, la variabilité et la lisibilité. Aussi, cette mesure permet de générer, par classification non supervisée, des catégories de personnes, à la fois en termes de variabilité de la signature et de complexité du tracé. En confrontant cette mesure aux performances de systèmes de vérification usuels sur chaque catégorie de personnes, nous avons trouvé que les performances se dégradent de manière significative (d'un facteur 2 au minimum) entre les personnes de la catégorie "haute Entropie" (signatures très variables et peu complexes) et celles de la catégorie "basse Entropie" (signatures les plus stables et les plus complexes). Nous avons ensuite proposé une mesure de qualité basée sur l'entropie relative (distance de Kullback-Leibler), dénommée "Entropie Relative Personnelle" permettant de quantifier la vulnérabilité d'une personne aux attaques (bonnes imitations). Il s'agit là d'un concept original, très peu étudié dans la littérature. La vulnérabilité associée à chaque personne est calculée comme étant la distance de Kullback-Leibler entre les distributions de probabilité locales estimées sur les signatures authentiques de la personne et celles estimées sur les imitations qui lui sont associées. Nous utilisons pour cela deux Modèles de Markov Cachés, l'un est appris sur les signatures authentiques de la personne et l'autre sur les imitations associées à cette personne. Plus la distance de Kullback-Leibler est faible, plus la personne est considérée comme vulnérable aux attaques. Cette mesure est plus appropriée à l'analyse des systèmes biométriques car elle englobe en plus des trois critères habituels de la littérature, la vulnérabilité aux imitations. Enfin, nous avons proposé une mesure de qualité pour les signatures imitées, ce qui est totalement nouveau dans la littérature. Cette mesure de qualité est une extension de l'Entropie Personnelle adaptée au contexte des imitations: nous avons exploité l'information statistique de la personne cible pour mesurer combien la signature imitée réalisée par un imposteur va coller à la fonction de densité de probabilité associée à la personne cible. Nous avons ainsi défini la mesure de qualité des imitations comme étant la dissimilarité existant entre l'entropie associée à la personne à imiter et celle associée à l'imitation. Elle permet lors de l'évaluation des systèmes de vérification de quantifier la qualité des imitations, et ainsi d'apporter une information vis-à-vis de la résistance des systèmes aux attaques. Nous avons aussi montré l'intérêt de notre mesure d'Entropie Personnelle pour améliorer les performances des systèmes de vérification dans des applications réelles. Nous avons montré que la mesure d'Entropie peut être utilisée pour : améliorer la procédure d'enregistrement, quantifier la dégradation de la qualité des signatures due au changement de plateforme, sélectionner les meilleures signatures de référence, identifier les signatures aberrantes, et quantifier la pertinence de certains paramètres pour diminuer la variabilité temporelle.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00765378
Date13 January 2011
CreatorsHoumani, Nesma
PublisherInstitut National des Télécommunications
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds