Return to search

Optimization of a Fully-Passive Flapping-Airfoil Turbine

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2014-2015 / Ce mémoire concerne l'étude aéroélastique des oscillations auto-soutenues en pilonnementtangage d'une aile portante montée sur des supports élastiques et exposée à un écoulement. De telles oscillations pourraient être utilisées afin de développer un nouveau type de turbine hydrocinétique relativement simple d'un point de vue mécanique. Ceci est possible car les oscillations qui résultent de l'interaction fluide-structure entre l'écoulement, l'aile et ses supports élastiques sont entretenues par un transfert d'énergie de l'écoulement vers la structure. Dans cette étude numérique, le logiciel OpenFOAM-2.1.x est utilisé afin de résoudre le problème aéroélastique. À l'aide de simulations instationnaires en deux dimensions d'un écoulement visqueux à nombre de Reynolds de 500 000, ce type de turbine est optimisé et amplement étudié afin de développer une meilleure compréhension de la physique en jeu. Suite à une optimisation de la turbine à l'aide d'une méthode de type gradients, des efficacités relativement élevées ont été obtenues. En effet, le cas optimal qui est présenté dans cette étude a une efficacité qui est de l'ordre de 34%. Cela correspond à une efficacité relativement élevée lorsqu'elle est comparée à l'efficacité d'une turbine hydrolienne cinématiquement contrainte qui est de l'ordre de 43%. Il faut noter que la version pleinement passive est mécaniquement beaucoup plus simple que la version cinématiquement contrainte. Un tel avantage mécanique peut, en soi, justifier pleinement une efficacité légèrement plus faible. De plus, la solution optimisée proposée dans ce mémoire n'est certainement pas unique et ne correspond pas au seul extremum du vaste espace paramétrique. En fait, d'autres solutions efficaces sont présentées dans ce mémoire et une optimisation complète autour de ces solutions demeure toujours à être effectuée. Dans tous les cas, ces réesultats démontrent le grand potentiel d'utiliser des ailes oscillantes pleinement passives en guise d'hydroliennes efficaces. D'un point de vue physique, ce mémoire met en valeur que le phénomène d'oscillations de cycle limite auquel l'aile est sujette est le résultat d'un flottement de décrochage. Cela est ainsi en raison de la forte interaction entre l'aile et les tourbillons largués pendant le grand décrochage dynamique. En fait, c'est spécifiquement cette interaction entre l'aile et les vortex qui donne lieu au mouvement de tangage. De plus, deux mécanismes responsables des bonnes performances de la turbine ont été mis en valeur. Ces mécanismes sont la synchronisation adéquate entre les deux degrés de liberté, ainsi que le mouvement non sinusoïdal en tangage. / This master's thesis deals with an aeroelastic problem that consists into self-sustained, pitchheave oscillations of an elastically-mounted airfoil. Such oscillations of an airfoil could be used in order to develop a novel fully-passive flow harvester that is relatively simple from a mechanical point of view. Indeed, the motion of an airfoil that is elastically mounted emerges as a result of the fluid-structure interaction between the flow, the airfoil and its elastic supports, and is sustained through a transfer of energy from the flow to the structure. In this numerical study, the OpenFOAM-2.1.x CFD toolbox is used for solving the aeroelastic problem. Through unsteady two-dimensional viscous simulations at a Reynolds number of 500,000, such a fully-passive turbine is optimized and extensively investigated to develop a better comprehension of the physics at play. Following a gradient-like optimization of the turbine, relatively high efficiencies have been obtained. Indeed, the optimal case found in this numerical study has a two-dimensional efficiency in the range of 34%. This is fairly high when compared to the two-dimensional efficiency of a kinematically-constrained turbine, which is in the range of 43%. Further, the fully-passive version of the turbine is far less mechanically complex than its kinematicallyconstrained counterpart. Alone, such a mechanical advantage could justify the slightly lower efficiency of the fully-passive turbine. Nevertheless, the optimized solution suggested within this thesis is certainly not the only local extrema of the vast parametric space pertaining to the aeroelastic device. Other efficient cases have been found, and complete optimizations about these solutions still need to be achieved. Overall, the results demonstrate the great potential of using fully-passive, flapping airfoils as efficient hydrokinetic turbines. From a more physical perspective, this thesis highlights the fact that the airfoil is undergoing limit-cycle oscillations as a result of stall flutter. This is because the interaction between the airfoil and the vortices shed during the dynamic stall events is large. In fact, it is specifically this interaction that mostly accounts for the pitching motion of the airfoil. Further, two fundamental mechanisms have been found to be very beneficial for enhancing the performances of the turbine. These mechanisms are the adequate synchronization between both degrees-offreedom, and the nonsinusoidal shape of the pitching motion.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25229
Date20 April 2018
CreatorsVeilleux, Jean-Christophe
ContributorsDumas, Guy
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xxi, 184 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds