Les matériaux argileux sont soumis aux chemins complexes de succion/contrainte qui se manifestent par des désordres affectant principalement les structures construites en surface et les ouvrages enterrés. Dans ce contexte, il est important d’appréhender le comportement hydromécanique de ces matériaux afin de mieux maîtriser leur utilisation. Le comportement hydromécanique complexe des matériaux argileux est directement relié à leur structure interne qui a été le principal sujet de plusieurs études sur la micro- et macrostructure des sols. Ces études ont conduit aux développements des modèles élastoplastiques pour sols gonflants. Les modèles existants sont capables de simuler le comportement principal de sol gonflant non saturé, mais ils présentent un grand nombre de paramètres, ce qui prend du temps pour le calcul. Par conséquence, on propose une méthode simplifiée pour modéliser le comportement hydromécanique des sols gonflants basée sur la théorie de l’état limite. Ce modèle est tout d’abord validé par les résultats de l’essai oedométrique. Ensuite, il est implanté dans un code aux éléments finis (CAST3M) pour simuler le comportement in situ des sols gonflants. Enfin, l’application de la théorie de l’état limite au sol gonflant avec une grande densité est effectuée par la combinaison de l’écrouissage cinématique et l’écrouissage isotrope. / Clayey materials are often subjected to the complex suction/stress paths, causing many problems in both surface structures and buried structures built on them. In this context, it is important to study the hydromechanical behavior of these materials in order to better control their use in civil engineering. The complex hydromechanical behavior of clay materials is basically connected to their fabric which has been the main subject of several studies on the micro- and macrostructure of soils. These studies have led to the development of elastoplastic models for expansive soils. The existed models are able to simulate the basic behavior of unsaturated expansive soil, but present a large number of model parameters, leading to a time-consuming calculation. Therefore, we propose a simplified method to model the hydromechanical behavior of expansive soils based on shakedown concept. This model is first validated by the experimental results of cyclic suction-controlled oedometer tests. Then, it is implemented in a finite element code (CAST3M) to simulate the in-situ behavior of expansive soils. Finally, the application of shakedown theory to heavily dense expansive soils is carried out by considering a combined hardening plasticity.
Identifer | oai:union.ndltd.org:theses.fr/2015STRAD004 |
Date | 24 February 2015 |
Creators | Li, Kai |
Contributors | Strasbourg, Migault, Bernard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds