This thesis considers the design of a beamformer which can enhance desired signals in an environment consisting of broadband nearfield and/or farfield sources. The thesis contains: a formulation of a set of analysis tools which can provide insight into the intrinsic structure of array processing problems; a methodology for nearfield beamforming; theory and design of a general broadband beamformer; and a consideration of a coherent nearfield broadband adaptive beamforming problem. To a lesser extent, the source localization problem and background noise modeling are also treated.
¶:
A set of analysis tools called modal analysis techniques which can be used to a solve wider class of array signal processing problems, is first formulated. The solution to the classical wave equation is studied in detail and exploited in order to develop these techniques.
¶:
Three novel methods of designing a beamformer having a desired nearfield broadband beampattern are presented. The first method uses the modal analysis techniques to transform the desired nearfield beampattern to an equivalent farfield beampattern. A farfield beamformer is then designed for a transformed farfield beampattern which, if achieved, gives the desired nearfield pattern exactly. The second method establishes an asymptotic equivalence, up to complex conjugation, of two problems: (i) determining the nearfield performance of a farfield beampattern specification, and (ii) determining the equivalent farfield beampattern corresponding to a nearfield beampattern specification. Using this reciprocity relationship a computationally simple nearfield beamforming procedure is developed. The third method uses the modal analysis techniques to find a linear transformation between the array weights required to have the desired beampattern for farfield and nearfield, respectively.
¶:
An efficient parameterization for the general broadband beamforming problem is introduced with a single parameter to focus the beamformer to a desired operating radius and another set of parameters to control the actual broadband beampattern shape. This parameterization is derived using the modal analysis techniques and the concept of the theoretical continuous aperture.
¶:
A design of an adaptive beamformer to operate in a signal environment consisting of broadband nearfield sources, where some of interfering signals may be correlated with desired signal is also considered. Application of modal analysis techniques to noise modeling and broadband coherent source localization conclude the thesis.
Identifer | oai:union.ndltd.org:ADTP/216696 |
Date | January 2000 |
Creators | Abhayapala, P. Thushara D., Thushara.Abhayapala@anu.edu.au |
Publisher | The Australian National University. Telecommunications Engineering Group |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.anu.edu.au/legal/copyright/copyrit.html), Copyright P. Thushara D. Abhayapala |
Page generated in 0.0022 seconds