Historically, wagons have been designed according to the American Association of Railroads specifications. These require that wagons be designed to withstand a static load between the couplers of 350 tons. This implies that the structure has a certain stiffness. In order to improve load to tare ratio, there has been talk of reducing the end load specifications. This implies that the stiffness of the wagon will reduce. Using more flexible wagons implies that the freight will probably be exposed to a harsher dynamic environment. There is a trade off between the cost of packaging and the cost of protection devices installed in the vehicle. If handling damage can be prevented then an understanding of the dynamic environment will assist in reducing the packaging requirement. This research looked at the dynamic characteristics of an existing design of wagon using modal analysis. The results from the modal analysis were extended to be inputs to the time domain freight model. Various analytical models of the freight were developed depending on the configuration and dynamic properties. Special consideration was given to a cylinder with its axis transverse to the wagon. The modal model was modified to accommodate the change in mass imposed by the freight. The various sources of dynamic excitation were explored, namely inputs from the coupler and from the bogie. Data from shunting yard simulations were used to generate spectra as input to the wagon model. The objective was to use modal techniques to be able to take individual components, form them into a complete model and make informed decisions about the suitability of a certain configuration for traffic. / Thesis (Ph.D.)-University of Natal, Durban, 2002.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/4610 |
Date | January 2002 |
Creators | Loubser, Richard Clive. |
Contributors | Kaczmarczyk, Stefan., Adali, Sarp. |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds