Les communautés végétales constituent des systèmes complexes au sein desquels de nombreuses espèces, pouvant présenter une large variété de traits fonctionnels, interagissent entre elles et avec leur environnement. En raison de la quantité et de la diversité de ces interactions les mécanismes qui gouvernent les dynamiques des ces communautés sont encore mal connus. Les approches basées sur la modélisation permettent de relier de manière mécaniste les processus gouvernant les dynamiques des individus ou des populations aux dynamiques des communautés qu'ils forment. L'objectif de cette thèse était de développer de telles approches et de les mettre en oeuvre pour étudier les mécanismes sous-jacents aux dynamiques des communautés. Nous avons ainsi développés deux approches de modélisation. La première s'appuie sur un cadre de modélisation stochastique permettant de relier les dynamiques de populations aux dynamiques des communautés en tenant compte des interactions intra- et interspécifiques et de l'impact des variations environnementale et démographique. Cette approche peut-être aisément appliquée à des systèmes réels et permet de caractériser les populations végétales à l'aide d'un petit nombre de paramètres démographiques. Cependant nos travaux suggèrent qu'il n'existe pas de relation simple entre ces paramètres et les traits fonctionnels des espèces, qui gouvernent pourtant leur réponse aux facteurs externes. La seconde approche a été développée pour dépasser cette limite et s'appuie sur le modèle individu-centré Nemossos qui représente de manière explicite le lien entre le fonctionnement des individus et les dynamiques de la communauté qu'ils forment. Afin d'assurer un grand potentiel d'application à Nemossos, nous avons apportés une grande attention au compromis entre réalisme et coût de paramétrisation. Nemossos a ainsi pu être entièrement paramétré à partir de valeur de traits issues de la littérature , son réalisme a été démontré, et il a été utilisé pour mener des expériences de simulations numériques sur l'importance de la variabilité temporelle des conditions environnementales pour la coexistence d'espèces fonctionnellement différentes. La complémentarité des deux approches nous a permis de proposer des éléments de réponse à divers questions fondamentales de l'écologie des communautés incluant le rôle de la compétition dans les dynamiques des communautés, l'effet du filtrage environnementale sur leur composition fonctionnel ou encore les mécanismes favorisant la coexistence des espèces végétales. Ici ces approches ont été utilisées séparément mais leur couplage peut offrir des perspectives intéressantes telles que l'étude du lien entre le fonctionnement des plantes et les dynamiques des populations. Par ailleurs chacune des approches peut être utilisée dans une grande variété d'expériences de simulation susceptible d'améliorer notre compréhension des mécanismes gouvernant les communautés végétales. / Plant communities are complex systems in which multiple species differing by their functional attributes interact with their environment and with each other. Because of the number and the diversity of these interactions the mechanisms that drive the dynamics of theses communities are still poorly understood. Modelling approaches enable to link in a mechanistic fashion the process driving individual plant or population dynamics to the resulting community dynamics. This PhD thesis aims at developing such approaches and to use them to investigate the mechanisms underlying community dynamics. We therefore developed two modelling approaches. The first one is based on a stochastic modelling framework allowing to link the population dynamics to the community dynamics whilst taking account of intra- and interspecific interactions as well as environmental and demographic variations. This approach is easily applicable to real systems and enables to describe the properties of plant population through a small number of demographic parameters. However our work suggests that there is no simple relationship between these parameters and plant functional traits, while they are known to drive their response to extrinsic factors. The second approach has been developed to overcome this limitation and rely on the individual-based model Nemossos that explicitly describes the link between plant functioning and community dynamics. In order to ensure that Nemossos has a large application potential, a strong emphasis has been placed on the tradeoff between realism and parametrization cost. Nemossos has then been successfully parameterized from trait values found in the literature, its realism has been demonstrated and it has been used to investigate the importance of temporal environmental variability for the coexistence of functionally differing species. The complementarity of the two approaches allows us to explore various fundamental questions of community ecology including the impact of competitive interactions on community dynamics, the effect of environmental filtering on their functional composition, or the mechanisms favoring the coexistence of plant species. In this work, the two approaches have been used separately but their coupling might offer interesting perspectives such as the investigation of the relationships between plant functioning and population dynamics. Moreover each of the approaches might be used to run various simulation experiments likely to improve our understanding of mechanisms underlying community dynamics.
Identifer | oai:union.ndltd.org:theses.fr/2016CLF22683 |
Date | 24 March 2016 |
Creators | Lohier, Théophile |
Contributors | Clermont-Ferrand 2, Deffuant, Guillaume |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds