In this study, a three-dimensional, three-phase dynamic simulation model based on geological investigations of Korolev oilfield in Kazakhstan was used as a development planning tool in order to improve performance of three new wells.
The model, developed previously by means of a seismic study, well log and core data, incorporating with characteristics of oilfield productivity, properties of reservoir, liquids and gases that are saturating the hydrocarbon-bearing horizon can be used to calculate development parameters for Korolev field, including production well locations, drilling schedules, and to facilitate both long-term and short-term forecasting for the purposes of optimizing the hydrocarbon recovery from the field.
The objective of this work is to assess the impact of adding 3 extra producing wells and find ways to optimize cumulative production with the least impact on the existing development plan by means of deeper understanding subsurface dynamic processes of the Korolev field. The challenge is a high degree of connectivity between wells in the productive formation throughout the field so that any change of production parameters affects the whole field&rsquo / s cumulative production.
Trying to find a solution to optimum production of the reservoir forecast studies were carried out, the impact of each new well on development parameters was defined, sub-surface processes changes due to extra producers lead-in were explained and as a result of this thesis two optimization models were proposed, one of which will bring nearly 9.7 million barrels more oil.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612448/index.pdf |
Date | 01 September 2010 |
Creators | Yskak, Aidos |
Contributors | Parlaktuna, Mahmut |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0017 seconds