Return to search

Reducing the Distance Between Requirements Engineering and Verification

Background Requirements engineering and verification (REV) processes play es-sential roles in software product development. There are physical and non-physicaldistances between entities (actors, artifacts, and activities) in these processes. Cur-rent practices that reduce the distances, such as automated testing and alignmentof document structure and tracing only partially close the above mentioned gap.Objective The aim of this thesis is to investigate solutions w.r.t their abilityto reduce the distances between requirements engineering and verification. Twotechniques that are explored in this thesis are automated testing (model-basedtesting, MBT) and alignment of document structure and tracing (traceability).Method The research methods used in this thesis are systematic mapping, soft-ware requirements mining, case study, literature survey, validation study, and de-sign science.Results MBT and traceability are effective in reducing the distance between re-quirements and verification. However, both activities have some shortcoming thatneeds to be addressed when used for that purpose. Current MBT techniques inthe context of software performance do not attain all the goals of MBT: 1) require-ments validation, 2) checking the testability of requirements, and 3) the generationof an efficient test suite. These goals are essential to reduce the distance. We de-veloped and assessed performance requirements verification and test environmentgeneration approach to tackle these shortcomings. Also, traceability between re-quirements and verification suffers from the low granularity of trace links and doesnot support the verification of all requirements. We propose the use of taxonomictrace links to trace and align the structure of requirements specifications and ver-ification artifacts. The results from the validation study show that the solution isfeasible in practice. However, this comes with challenges that need to be addressed.Conclusion MBT and improved traceability reduce multiple distances betweenactors, artifacts, and activities in the requirements engineering and verificationprocess. MBT is most effective in reducing the distances when the model used isbuilt from the requirements. Traceability is essential in easing access to relevantinformation when needed and should not be seen as an overhead. When creatingtrace links, we need to consider the difference in the abstraction, structure, andtime between the linked artifacts / <p>Chapter 3 and 4 are papers submitted to journals, and therefore removed from the fulltext file.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-23570
Date January 2022
CreatorsAbdeen, Waleed
PublisherBlekinge Tekniska Högskola, Institutionen för programvaruteknik, Karlskrona
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationBlekinge Institute of Technology Licentiate Dissertation Series, 1650-2140 ; 4

Page generated in 0.0192 seconds