This dissertation contains two parts: Commutative and Noncommutative Multidimensional ($d$-D) Linear Systems Theory. The first part focuses on the development of the interpolation theory to solve the $H^{\infty}$ control problem for $d$-D linear systems. We first review the classical discrete-time 1D linear system in the operator theoretical viewpoint followed by the formulations of the so-called Givone-Roesser and Fornasini-Marchesini models. Application of the $d$-variable $Z$-transform to the system of equations yields the transfer function which is a rational function of several complex variables, say $\mathbf{z} = (z_{1}, \dots, z_{d})$.
We then consider the output feedback stabilization problem for a plant $P(\mathbf{z})$. By assuming that $P(\mathbf{z})$ admits a double coprime factorization, then a set of stabilizing controllers $K(\mathbf{z})$ can be parametrized by the Youla parameter $Q(\mathbf{z})$. By doing so, one can convert such a problem to the model matching problem with performance index $F(\mathbf{z})$, affine in $Q(\mathbf{z})$. Then, with $F(\mathbf{z})$ as the design parameter rather than $Q(\mathbf{z})$, one has an interpolation problem for $F(\mathbf{z})$. Incorporation of a tolerance level on $F(\mathbf{z})$ then leads to an interpolation problem of multivariable Nevanlinna-Pick type. We also give an operator-theoretic formulation of the model matching problem which lends itself to a solution via the commutant lifting theorem on the polydisk.
The second part details a system whose time-axis is described by a free semigroup $\mathcal{F}_{d}$. Such a system can be represented by the so-called noncommutative Givone-Roesser, or noncommutative Fornasini-Marchesini models which are analogous to those in the first part. Application of a noncommutative $d$-variable $Z$-transform to the system of equations yields the transfer function expressed by a formal power series in several noncommuting indeterminants, say $T(z) = \sum_{v \in \mathcal{F}_{d}}T_{v}z^{v}$ where $z^{v} = z_{i_{n}} \dotsm z_{i_{1}}$ if $v = g_{i_{n}} \dotsm g_{i_{1}} \in \mathcal{F}_{d}$ and $z_{i}z_{j} \neq z_{j}z_{i}$ unless $i = j$. The concepts of reachability, controllability, observability, similarity, and stability are introduced by means of the state-space interpretation. Minimal realization problems for noncommutative Givone-Roesser or Fornasini-Marchesini systems are solved directly by a shift-realization procedure constructed from appropriate noncommutative Hankel matrices. This procedure adapts the ideas of Schützenberger and Fliess originally developed for "recognizable series" to our systems. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/26845 |
Date | 16 April 2003 |
Creators | Malakorn, Tanit |
Contributors | Electrical and Computer Engineering, VanLandingham, Hugh F., Jacobs, Ira, Day, Martin V., Ball, Joseph A., Baumann, William T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | ETD.pdf |
Page generated in 0.0021 seconds