Return to search

Modelagem e controle preditivo econômico de um reator de amônia. / Modeling and economic predictive control of an ammonia reactor.

Este estudo mostra o desenvolvimento de um controlador da classe MPC Model Predictive Control, ou controle preditivo com modelo, para ser utilizado no reator de amônia da Unidade de Fertilizantes Nitrogenados da Bahia FAFEN-BA, da PETROBRAS, localizada em Camaçari/BA. A estratégia de controle visa manter as temperaturas de saída de cada um dos leitos catalíticos do reator dentro de limites adequados através da manipulação das válvulas de controle instaladas na corrente de alimentação do equipamento. O controlador escolhido foi de horizonte de predição infinito com faixas nas variáveis controladas. Adicionalmente, o controlador contém, em uma única camada, um componente de otimização econômica com o objetivo de maximizar o teor de amônia na saída do reator. A função econômica que dá a direção de otimização consiste em um modelo rigoroso de estado estacionário do reator capaz de calcular a fração molar de amônia na saída do equipamento quando são conhecidas as condições da corrente de alimentação e o valor das variáveis manipuladas do controlador. Os resultados das simulações mostraram que o controlador proposto tem bom desempenho, tanto sob o aspecto de controle, no sentido de controlar o sistema quando este sofre perturbações, quanto sob a ótica de otimização econômica, maximizando a conversão de reagentes em amônia sempre que existem graus de liberdade disponíveis no sistema. Foi verificado que a consideração de um MPC de horizonte de predição infinito elimina a necessidade de considerar o gradiente reduzido da função econômica na função objetivo do controlador. Uma sintonia adequada do controlador permite que se considere o gradiente completo da função econômica sem que haja desvio permanente, ou offset, nas variáveis controladas mesmo quando o ponto ótimo de operação se encontra além da faixa de controle. / This study shows the development of a Model Predictive Control (MPC) to the ammonia reactor of PETROBRAS nitrogen fertilizers unit FAFEN-BA that is located in Camaçari/BA, Brazil. The main goal of the control strategy is to keep the temperature at the outlet of the catalyst beds inside adequate ranges by manipulating the feed flow rates to the reactor beds. It has been chosen an infinite horizon controller with control zones and an economic objective. The control and economic optimization are performed in a single layer structure where the objective is to maximize the ammonia content in the reactor outlet stream. The economic function which provides the optimization direction is based on a steady state rigorous model of the reactor that evaluates the ammonia molar fraction at the outlet stream assuming that the feed stream conditions and the manipulated variables are known. The proposed controller shows satisfactory performance in simulations either controlling the system when it faces external disturbances or optimizing the economic goal by increasing the ammonia conversion when degrees of freedom are available. It is shown that the adoption of the infinite horizon MPC eliminates the need to consider the reduced gradient of the economic function in the cost function of the controller. The proper tuning of the controller allows the consideration of the full gradient of economic function without producing offset in the controlled outputs even when the optimum operating point lays outside the control zones.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29032012-111135
Date25 November 2011
CreatorsGlauco Gancine Esturilio
ContributorsDarci Odloak, Claudio Garcia, Antônio Carlos Zanin
PublisherUniversidade de São Paulo, Engenharia Química, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0011 seconds