Thermoelectric modules are an important alternative to heat engines in the harvesting of waste heat. Electrical-thermal analogues are often employed when studying heat conduction and this analogue can be extended to develop an equivalent circuit for thermoelectric effects. For the primarily one-dimensional problem of thermoelectricity, the equations can be discretized to create a simple mathematical model. In this document, such a model is developed from first principles and show that the electro-thermal coupling is properly in- corporated. The results of simulations using the model are then presented and validated experimentally. Furthermore, in one possible application of thermoelectric modules, a self-contained cooling unit with an integrated thermoelectric generator is designed. By performing fluid dynamics simulations on a fan and heat sink model, the geometry and operating conditions can be optimized and the start-up and transient characteristics are studied.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/31648 |
Date | 04 January 2012 |
Creators | Yan, David |
Contributors | Dawson, Francis P., Pugh, Mary C. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0013 seconds