Return to search

Comparação de modelos estatísticos para estimação do intervalo de tempos entre ultrapasses de um limiar de temperatura na cidade de P. Prudente-SP /

Orientador: Mário Hissamitsu Tarumoto / Resumo: A observação de fenômenos naturais, como as mudanças de temperatura é bastante frequente no mundo atual, de forma que vários estudos têm sido realizados com o intuito de prever a ocorrência delas tendo em vista o que ocorreu no passado. Estudos desta natureza, em que a coleta de dados ocorre de forma contínua, seja por medida horária ou diária, não apresenta independência entre as observações. Entre as possíveis formas de análise, há a aplicação de técnicas de séries temporais ou também a teoria dos valores extremos. No entanto, um dos objetivos deste estudo é construir uma matriz de transição, de tal forma que possamos determinar a probabilidade, por exemplo, de alta temperatura amanhã, dado que hoje foi observado este fenômeno. Para a obtenção deste resultado, uma possibilidade é construir um modelo baseado em dados dependentes que seguem um processo de Markov, em que a suposição é de que exista dependência somente com o dia anterior. Neste trabalho, pretendemos construir este modelo e realizar a aplicação em dados de temperatura na cidade de Presidente Prudente-SP no período de janeiro de 2011 a dezembro de 2016. Posteriormente vamos realizar comparações entre o modelo markoviano de nido a partir da distribuição Weibull bivariada de Marshall e Olkin e outros modelos markovianos de nidos a partir das funções cópulas. / Abstract: The observation of natural phenomena, such as temperature changes, is quite frequent in the world today, so that several studies have been carried out with the intention of predicting their occurrence in view of what has happened in the past. Data of this nature, in which the data collection occurs continuously, whether by hourly or daily measurement, does not present independence between observations. Among the possible forms of analysis is the application of time-series techniques, however, the purpose of this study is to construct a transition matrix, so that we can determine the probability, for example, of high temperature tomorrow, since today this phenomenon was observed. To obtain this result, one possibility is to construct a model based on dependent data that follows a Markov process, in which the assumption is that there is dependence only with the previous day. In this work, we intend to build this model and perform the application on temperature data in the city of Presidente Prudente-SP from January 2011 to December 2016. For which comparisons were made between the Markovian model de ned from the distribution Weibull bivariate of Marshall and Olkin and other Markovian models de ned from the copula functions. / Mestre

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000924305
Date January 2019
CreatorsAlvaro, Maria Magdalena Kcala
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências e Tecnologia.
PublisherPresidente Prudente,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese
Detected LanguagePortuguese
Typetext
Formatf.
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0017 seconds