Return to search

Ensaios analíticos e numéricos de processos estocásticos unidimensionais / Analytic and numeric essays on one-dimensional stochastic processes

Nesta presente tese, abordaremos três problemas sobre processos estocásticos unidimensionais governados pela equação mestra. Através do Ansatz do Produto Matricial (MPA) determinaremos as condições suficientes para garantir a integrabilidade de um novo processo de difusão num meio com impurezas. Investigando o espectro de tal modelo, computaremos o expoente crítico z que determina como os observáveis atingem o estado estacionário. Em seguida, estudaremos o clássico modelo de 6-vértices bidimensional definido na matriz de transferência diagonal-diagonal, como um modelo de trafego unidimensional com dinâmica síncrona e assíncrona. E para concluir nosso trabalho, investigaremos alguns modelos de processos de contato com difusão, utilizando a teoria de Campo Médio em Cluster. / In this thesis, we discuss three problems on dimensional stochastic processes governed by master equation. By Product Matrix Ansatz (MPA) we determine the conditions sufficient to ensure integrability of a new process of diffusion in a medium with impurities. Investigating the spectrum of this model, we compute the critical exponent z that determines how the observable flow to stationary state. In the folowing, we study the classical 6-vertex model defined in two-dimensional diagonal-diagonal matrix transfer as a unidimensional model of traffic with synchronous and asynchronous dinamics. And to finish our work, we study models of diffusion processes of contact, using the theory of Cluster Mean-Field

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-24032010-154848
Date31 March 2009
CreatorsAnderson Augusto Ferreira
ContributorsJose Fernando Fontanari, Americo Tristao Bernardes, Salomon Sylvain Mizrahi, Miled Hassan Youssef Moussa, Mario Jose de Oliveira
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds