Return to search

Construction of extended topological quantum field theories / Construction de théories quantiques des champs topologiques étendus

La position centrale occupée par les Théories Quantiques des Champs Topologiques (TQFTs) dans l’étude de la topologie en basse dimension est due à leur structure extraordinairement riche, qui permet différentes interactions et applications à des questions de nature géométrique. Depuis leur première apparition, un grand effort a été mis dans l’extension des invariants quantiques de 3-variétés en TQFTs et en TQFT Étendues (ETQFTs). Cette thèse s’attaque à ce problème dans deux cadres généraux différents. Le premier est l’étude des invariants quantiques semi-simples de Witten, Reshetikhin et Turaev issus de catégories modulaires. Bien que les ETQFTs correspondantes étaient connues depuis un certain temps, une réalisation explicite basée sur la construction universelle de Blanchet, Habegger, Masbaum et Vogel apparaît ici pour la première fois. L’objectif est de tracer la route à suivre dans la deuxième partie de la thèse, où la même procédure est appliquée à une nouvelle famille d’invariants quantiques non semi-simples due à Costantino, Geer et Patureau. Ces invariants avaient déjà été étendus en TQFTs graduées par Blanchet, Costantino, Geer and Patureau, mais seulement pour une famille explicite d’exemples. Nous posons la première pierre en introduisant la définition de catégorie modulaire relative, un analogue non semi-simple aux catégories modulaires. Ensuite, nous affinons la construction universelle pour obtenir des ETQFTs graduées étendant à la fois les invariants quantiques de Costantino, Geer et Patureau et les TQFTs graduées de Blanchet, Costantino, Geer et Patureau dans ce cadre général / The central position held by Topological Quantum Field Theories (TQFTs) in the study of low dimensional topology is due to their extraordinarily rich structure, which allows for various interactions with and applications to questions of geometric nature. Ever since their first appearance, a great effort has been put into extending quantum invariants of 3-dimensional manifolds to TQFTs and Extended TQFTs (ETQFTs). This thesis tackles this problem in two different general frameworks. The first one is the study of the semisimple quantum invariants of Witten, Reshetikhin and Turaev issued from modular categories. Although the corresponding ETQFTs were known to exist for a while, an explicit realization based on the universal construction of Blanchet, Habegger, Masbaum and Vogel appears here for the first time. The aim is to set a golden standard for the second part of the thesis, where the same procedure is applied to a new family of non-semisimple quantum invariants due to Costantino, Geer and Patureau. These invariants had been previously extended to graded TQFTs by Blanchet, Costantino, Geer an Patureau, but only for an explicit family of examples. We lay the first stone by introducing the definition of relative modular category, a non-semisimple analogue to modular categories. Then, we refine the universal construction to obtain graded ETQFTs extending both the quantum invariants of Costantino, Geer and Patureau and the graded TQFTs of Blanchet, Costantino, Geer and Patureau in this general setting

Identiferoai:union.ndltd.org:theses.fr/2017USPCC114
Date27 October 2017
CreatorsDe Renzi, Marco
ContributorsSorbonne Paris Cité, Blanchet, Christian
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Collection

Page generated in 0.0025 seconds