Electroabsorption modulators (EAM) have attract a lot of interests in high-speed optical communication due to low chirp, high-efficiency operation and the capability to be integrated with other semiconductor devices. Enhancing the operation by overcoming the trade-off between RC-limitation and high-speed performance, traveling-wave types of EAMs (TWEAM) have been documented to be a good candidate. In this thesis, a novel type of TWEAMs, namely undercut-etching-the-active-region type (UEAR), have been characterized and analyzed.
There are two topics in this thesis, namely (1) one is to compare the performance of the UEAR and conventional ridge-waveguide (RW) types of TWEAM. The regime of D.C. to 40GHz small-signal modulation and 10 Gbits/sec large-signal data transmission are used to characterize and compare the performance of TWEAMs. In comparison with conventional ridge-waveguide (RW) TWEAM, 3dB lower optical-insertion-loss, at least 6dB higher in RF-link (D.C. to 40GHz) and faster electro-optical response (3dB bandwidth of 25GHz at 50£[-termination for UEAW and 15GHz for RW) are obtained in UEAW-TWEAM. Error-free 10Gbits/sec operation with high sensitivity of ¡V36.2 dBm and low swing voltage of 0.6V have been achieved in UEAW-TWEAM, a 3.2dB enhancement over RW-TWEAM, indicating the trade-off in designing electroabsorption modulators can be greatly released by novel type structure (UEAW).
(2) The other topic is the application of TWEAM to all-optical wavelength converters. The generating photocurrent by optical absorption is the effect accompanying with the electrical-to-optical modulation in the EAM. Using the properties of cross-absorption and generating photocurrent, high-speed all-optical modulation can be potentially implemented in the application of EAMs. Long -waveguide high-speed TWEAMs can thus have high-extinction ratio performance in all-optical conversion. The conversion efficiency of -26dB and high extinction ration of >20dB are obtained in this experiment, showing the potential in the application of all-optical conversion.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0628105-123048 |
Date | 28 June 2005 |
Creators | Hsiu, Wu, Tsu |
Contributors | San-Liang Lee, Chao-Kuei Lee, Sheng-Lung Hang, Tzyy-Sheng Horng, Yi-Jen Chiu |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0628105-123048 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0015 seconds