Return to search

Characterization of systemic acquired resistance in <i>Brassica napus</i>

Plants activate an array of defense mechanisms upon pathogen attack. Systemic acquired resistance (SAR) is an induced disease resistance phenomenon deployed after infection by a necrogenic pathogen and is dependent on endogenous accumulation of salicylic acid. The objectives of my research were to characterize SAR in the crop plant, <i>Brassica napus</i> (canola), and study the effects of overexpressing genes involved in SAR on disease resistance. Biological induction of SAR using necrogenic Pseudomonas syringae and chemical induction using benzo (1,2,3) thiadiazole-7-carbothionic acid reduced growth of the bacterial pathogen P. syringae and the fungal pathogen Leptosphaeria maculans. This growth reduction was associated with an increase in transcript levels of pathogenesis-related (PR) genes, one of the characteristic features of SAR. Transgenic plants expressing a bacterial salicylate hydroxylase gene (NahG), were more susceptible to the above pathogens and were delayed in accumulating PR gene transcripts, indicating a need for SA accumulation for SAR in B. napus. Expression of two SAR genes from Arabidopsis, DEFECTIVE IN INDUCED RESISTANCE 1 (DIR1) and NON EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), in <i>B. napus</i> enhanced resistance against virulent P. syringae without SAR pre-treatments. Putative orthologs of DIR1 and NPR1 (BnDIR1 and BnNPR1) were isolated from B. napus based on EST sequences. BnDIR1 and BnNPR1 display 71% and 66% amino acid sequence similarities, respectively, to the corresponding Arabidopsis proteins. Expression of BnNPR1 in Arabidopsis npr1 mutant backgrounds indicated that it was able to functionally complement these mutations. Expression of BnDIR1 enhanced disease resistance in both Arabidopsis wild-type and dir1-1 mutant backgrounds. Expression of DIR1, NPR1, BnDIR1 and BnNPR1, separately, in <i>B. napus</i> plants enhanced resistance against P. syringae. SAR pre-treatments further enhanced resistance of transgenic <i>B. napus</i> plants expressing DIR1 and BnDIR1 to <i>P. syringae</i>, indicating an additive effect. Expression of DIR1 in B. napus did not provide resistance against <i>L. maculans</i>. These results provide the first in-depth molecular characterization of SAR in B. napus, and in particular, provide new insight into DIR1 function not previously reported in Arabidopsis.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-11092006-140204
Date13 November 2006
CreatorsPotlakayala, Shobha Devi
ContributorsRimmer, Roger, Nelson, Louise M., Fobert, Pierre R., Chivers, Douglas P., Bonham-Smith, Peta C., Wei, Yangdou
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-11092006-140204/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds