Return to search

Single molecule tracking studies of flow-aligned mesoporous silica monoliths: pore order and pore wall permeability

Doctor of Philosophy / Department of Chemistry / Daniel A. Higgins / This dissertation describes single-molecule tracking (SMT) studies for the quantitative characterization of one-dimensional (1D) nanostructures in surfactant-templated mesoporous silica monoliths prepared within microfluidic channels. Single molecule diffusion of fluorescent probe molecules within the cylindrical mesopores reflects microscopic morphologies and mass-transport properties of the materials with high temporal and spatial resolution. The pore organization and materials order are initially investigated as a function of sol aging prior to loading into the microfluidic channels. Mesopores in these materials are templated by Cetyltrimethylammonium bromide (CTAB). Wide-field fluorescence videos depict 1D motion of the dyes within the individual mesopores. Orthogonal regression analysis of these motions provides a measure of the mesopore orientation. Channels filled prior to gelation of the sol produce monoliths incorporating large monodomains with highly aligned mesopores. In contrast, channels filled close to or after gelation yield monoliths with misaligned pores that are also more disordered. Two-dimensional (2D) small angle X-ray scattering (SAXS) experiments support the results obtained by SMT. These studies help to identify conditions under which highly aligned mesoporous monoliths can be obtained and also demonstrate the utility of SMT for characterization of mesopore order.
The non-ionic surfactant Pluronic F127 is also utilized as the structural-directing agent. The diffusive motions of PDI dyes that are uncharged, cationic and anionic are explored by SMT and fluorescence correlation spectroscopy (FCS). The SMT studies for the uncharged dye show development of 1D diffusion along the flow direction while charged dyes exhibit predominant isotropic diffusion, with each of these behaviors becoming more prevalent as a function of aging time after filling of the microfluidic channels. SMT studies from silica-free F127 gels suggest that partitioning plays a important role in governing the diffusion behavior of the PDI dyes within the surfactant-filled mesopores. FCS results exhibit similar mean diffusion coefficients for all three dyes that suggest these dyes diffuse through similar sample regions. These studies demonstrate that the silica pore walls in the mesoporous silica monoliths remain permeable after gelation and that partitioning of solute species to different regions within the pores plays an important role in restricting the dimensionality of their diffusive motion

Identiferoai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/35731
Date January 1900
CreatorsPark, Seok Chan
PublisherKansas State University
Source SetsK-State Research Exchange
Languageen_US
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds