Return to search

Effect of Modifier Cation Substitution on Structure and Properties of Bioactive Glasses from Molecular Dynamics Simulations

Bioactive glass is a type of third generation bioactive material that can bond to both soft and hard tissue with applications ranging from bone defect repair, coatings for metallic implants, to scaffolds for tissue engineering. Design of bioactive glasses for these applications rely on a detailed understanding of the structures of these glasses which are complicated and multicomponent. In this thesis, I have applied molecular dynamics (MD) simulations with interatomic potentials developed in our group to understand the effect of modifier cation substitution on the structures and properties of two series of bioactive glasses. Particularly, MD simulations are used to understand K2O to Na2O and MgO to CaO substitution on the short and medium range structures (such as cation coordination number, pair distribution function, Qn distribution, and ring size distribution) and properties (such as bulk and Young's moduli and CTE) of 55S4.1 bioactive glasses. As Na2O is incrementally substituted with K2O in 55S4.1, a decrease of the glass transition temperature (Tg) and an increase of CTE was observed, as well as a decreasing trend in the moduli. For the MgO to CaO substitution series, Mg2+ is mainly four-fold coordinated that suggests that it can play a role as a network former in this series. Results of both series showed characteristics of the phenomena of the mixed alkali effect (MAE) that has been known to show non-linear variations in trends like Tg in glasses with alkali and alkali earth ion substitution.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1944349
Date05 1900
CreatorsVu, Myra
ContributorsDu, Jincheng, Young, Marcus, Aouadi, Samir
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Vu, Myra, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0017 seconds