Return to search

PURIFICATION AND CHARACTERIZATION OF BACTERIAL PHAGE PHI29 GENE 6 PROTEIN.

A DNA fragment containing the coding region for gene 6 of Bacterial phage ϕ29 was placed into an expression vector. The ϕ29 gene 6 protein was isolated in large amounts by chromatography on double-stranded DNA cellulose and DE52 cellulose. The ϕ29 gene 6 protein was determined to be greater 95% pure and has a molecular weight of approximately 16,000. The ϕ29 gene 6 protein is thought to be a dimer in its native form. The partial N-terminal amino acid sequence of the purified protein is identically to the inferred amino acid sequence from the nucleotide sequence of ϕ29 gene 6. Gene 6 protein of ϕ29 aggregates in a more purified state which suggest protein to protein interactions. Purified gene 6 protein did not stimulate the ϕ29 in vitro DNA replication system and may require binding with other replication proteins to enable it to function. Gene 6 protein binds weakly to double-stranded and single-strand DNA cellulose. There is segmental amino acid sequence and secondary structure homology with adenovirus DNA binding protein Antibody to gene 6 protein inhibits it from binding to ϕ29 DNA. The results presented in this dissertation suggest that ϕ29 gene 6 protein is a weak DNA bind protein and may not be required for the in vitro ϕ29 DNA replication system.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/183864
Date January 1986
CreatorsHODGES-GARCIA, YVONNE KATHLEEN.
ContributorsIto, Junetsu, Duffy, D. J., Bernstein, C., Kibler, R., Mount, D., Tischler, M.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds