Return to search

Hybrid PET/MRI Nanoparticle Development and Multi-Modal Imaging

The development of hybrid PET/MRI imaging systems needs to be paralleled with the development of a hybrid intrinsic PET/MRI probes. The aim of this work was to develop and validate a novel radio-superparamagnetic nanoparticle (r-SPNP) for hybrid PET/MRI imaging. This was achieved with the synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) that intrinsically incorporated 59Fe and manganese iron oxide nanoparticles (MIONs) that intrinsically incorporated 52Mn. Both [59Fe]-SPIONs and [52Mn]-MIONs were produced through thermal decomposition synthesis. The physiochemical characteristics of the r-SPNPs were assessed with TEM, DLS, and zeta-potential measurements, as well as in imaging phantom studies. The [59Fe]-SPIONs were evaluated in vivo with biodistribution and MR imaging studies. The biodistrubution studies of [59Fe]-SPIONs showed uptake in the liver. This corresponded with major MR signal contrast measured in the liver. 52Mn was produced on natural chromium through the 52Cr(p,n)52Mn reaction. The manganese radionuclides were separated from the target material through a liquid-liquid extraction. The αVβ3 integrin binding of [52Mn]-MION-cRGDs was evaluated with αVβ3 integrin solid phase assays, and the expression of αVβ3 integrin in U87MG xenograft tumors was characterized with fluorescence flow cytometry. [52Mn]-MION-cRGDs were used for in vivo PET and MR imaging of U87MG xenograft tumor bearing mice. PET data showed increased [52Mn]-MION-cRGD uptake compared with untargeted [52Mn]-MIONs. ROI analysis of PET and MRI data showed that MR contrasted corresponded with PET signal. Future work will utilize [52Mn]-MION-cRGDs in other tumor models and with hybrid PET/MRI imaging systems.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4252
Date03 December 2013
CreatorsHoffman, David
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0018 seconds