Return to search

Mitochondrial trafficking in healthy and injured neurons

Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of increased need such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by mitochondrial transport to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunctions.
The demands for mitochondria differ between developing and mature neurons, and separate mitochondrial recruitment signals have been identified in each case. In the first aim, we examined how mitochondrial dynamics are affected by the development of synaptic connections in cortical neurons. We revealed reduced mitochondrial movement and elongated morphology in mature neurons which probably serve to optimize mitochondrial contact with synaptic sites.
Synapses require mitochondria to supply ATP and regulate local [Ca2+]i for neurotransmission. The second aim investigated mitochondrial trafficking patterns relative to synaptic sites on axons and dendrites. We demonstrated that synapses are targets for long-term mitochondrial localization and dynamic recruitment of moving mitochondria, and that trafficking patterns are influenced by changes in synaptic activity. We also found that mitochondrial movement in dendrites is more severely impaired by neurotoxic glutamate and zinc exposures than in axons. These findings suggest a mechanism for postsynaptic dysfunction and dendritic degeneration in excitotoxicity.
The third aim examined impaired mitochondrial transport as an early pathogenic mechanism in Huntingtons disease. Recent studies indicate that aggregates composed of mutant huntingtin fragments hinder axonal transport by sequestering wildtype huntingtin, cytoskeletal components and molecular motors. Our studies in cortical neurons demonstrated reduced mitochondrial trafficking specifically to sites of aggregates and impeded passage of moving mitochondria by aggregates resulting in discrete regions of mitochondrial accumulation and immobilization.
In summary, this dissertation provides new insight into our understanding of mitochondrial trafficking, morphology and distribution in cortical neurons that are developing, synaptically mature, acutely injured, and diseased. We conclude that mitochondrial movement is dynamic in healthy neurons and that injured neurons exhibit different manifestations of impaired movement.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-12132005-112751
Date14 December 2005
CreatorsChang, Diane T. W.
ContributorsJoseph M. Ahearn, Ian J. Reynolds, Donald B. DeFranco, Judith Klein-Seetharaman, Michael J. Zigmond
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-12132005-112751/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds